SEMINAR PLANNER 2011
SUSTAINABLE BUILDING TECHNOLOGY
REHAU SUSTAINABLE BUILDING
TRAINING PROMOTES BEST PRACTICES

REHAU Academy is the central knowledge institute for REHAU solutions in the construction field. With first-class presenters providing classroom instruction, hands-on technical training, lunch and learn seminars and online e-learning programs, the Academy is offering more than 30 types of seminars for 2011. REHAU Academy conveys crucial product information and relevant industry experience, giving our customers and partners a competitive edge.

Cover: REHAU Academy facility in Leesburg, VA. Installed in this building and on our North American headquarters campus are our sustainable building technologies including radiant heating, snow and ice melting, geothermal ground loops, insulated energy transfer piping, PEXa plumbing and service line piping and uPVC window designs.
Whether touring a fine art exhibit at a world-famous museum or watching a favorite television program at home, a comfortable indoor environment can make a significant difference in how we enjoy these experiences. Buildings that surround us with consistent warmth, refreshing coolness, low humidity and filtered air offer an ideal setting for year-round indoor comfort.

Few of us would demand comfort at any cost. We want sustainable comfort — comfort that’s affordable, easy to maintain and good for the environment. Not only do we expect our buildings to make efficient use of energy; we also are beginning to require our buildings to sustain themselves with energy from the earth, wind and sun. Whether the goal is to lower a building’s carbon footprint or achieve complete independence from the power grid, sustainable building technology from REHAU can make a substantial contribution.

REHAU innovations have helped define the world of construction for more than 60 years. From geothermal heat exchange to radiant heating and cooling to fenestration, our systems are working to provide sustainable comfort in thousands of residential and commercial buildings around the world.
REHAU ACADEMY
PROFESSIONAL TRAINERS, SYSTEMS EXPERTISE AND CONVENIENT LOCATIONS
About the Trainers
REHAU Academy is staffed with experts in REHAU product technologies and their applications in the built environment, including product development engineers, standards specialists, controls experts and technical sales engineers. Our team of presenters includes professionals with practical experience, trained to deliver the information you need to know.

Training Materials
Attendees receive a seminar binder containing copies of presentations, plus the latest REHAU Academy Reference Documents CD. Many seminars also use installation guides, product catalogs and other technical handouts.

Training Locations
REHAU Academy trainers can present virtually anywhere – at our locations or yours. Academy facilities are located in Leesburg, Virginia; Burlington, Ontario; Addison, Illinois and Minneapolis, Minnesota. At the REHAU Academy in Leesburg, VA, full-size displays are used to explain installation techniques.

Registration for Seminars
The REHAU Academy website at na.rehau.com/academy lists upcoming training dates and locations, and offers easy access to seminar flyers for each scheduled event. You can complete the registration form included in each seminar flyer or use our new online form. This site is updated frequently with new events of all types. If you are interested in a seminar that is not scheduled, check with your local REHAU representative.
SEMINARS AT A GLANCE
SELECT A SEMINAR TO MEET YOUR NEEDS
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>1.1 Skill Builders Complete</td>
<td>2.1 Radiant Heating Installation</td>
<td>3.1 Radiant Heating Design</td>
<td>4.1 Radiant Floor Heating Installation Techniques</td>
<td>5.1 REHAU LoopCAD® PRO 2011</td>
<td>6.1 Radiant Floor Heating Installation Techniques</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1.2 Skill Builders Condensed</td>
<td>2.2 Radiant Heating and Snow and Ice Melting (SIM) Installation</td>
<td>3.2 Radiant Heating Design Workshop</td>
<td>4.2 Radiant Heating Products and Design Process</td>
<td>5.2 REHAU LoopCAD 2011 Non-graphical</td>
<td>6.2 Radiant Heating Design Process and Control Options</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.3 Geothermal Technology</td>
<td>2.3 Radiant Heating Installation and Geothermal Piping</td>
<td>3.3 Hydronic Snow and Ice Melting Design</td>
<td>4.3 Radiant Design Process and Control Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.4 Ground-air Heat Exchange Technology</td>
<td>2.4 RAUPANEL™ Installation Seminar</td>
<td>3.4 Radiant Heating and SIM Design</td>
<td>4.4 Radiant Cooling Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>2.5 Hydronic System Piping and Controls</td>
<td>3.5 Engineering Considerations for Radiant Heating Systems</td>
<td>4.5 Geothermal Piping Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>2.6 RAUGE® System Installation</td>
<td>3.6 Engineering Considerations for Radiant Cooling Systems</td>
<td>4.6 Ground-air Heat Exchange Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>2.7 IGSHPA Accreditation Seminar for Geothermal Installers</td>
<td>3.7 Engineering Considerations for Radiant Heating and SIM Systems</td>
<td>4.6 Compression-seal Technology for Windows and Doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>2.8 IGSHPA Accreditation Seminar for Vertical Drillers</td>
<td>3.8 Engineering Considerations for Radiant Heating and Cooling Systems</td>
<td>4.7 Integration of Sustainable Building Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8 High-performance Framing Materials for Windows and Doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graded boxes indicate our audience recommendation. Feel free to select any seminar offered. Then visit our website at na.rehau.com/academy to find upcoming dates and locations.
REHAU Academy’s comprehensive seminars deliver complete information on radiant heating, snow and ice melting and geothermal systems. These seminars cover introductory, intermediate and advanced level topics for audiences as diverse as installers, designers, builders and engineers. While education on each of these topics is also offered separately in shorter seminars found in this planner, the comprehensive seminars integrate information in meaningful ways for all levels of experience.
1.1 Skill Builders Complete
This seminar begins with technical information on core products such as RAUPEX® pipes, EVERLOC® fittings and PRO-BALANCE® manifolds, followed by advanced radiant heating installation techniques for wet and dry applications, including the innovative RAUPANEL™ and RAUPLATE™ heating systems. A technical explanation of the benefits of radiant heating systems is also provided. The second day focuses on the radiant design process, radiant materials estimating tips and radiant heating controls. The third day explains hydronic snow and ice melting design and installation, provides an overview of the INSULPEX® energy transfer piping system and an introduction to PEXa geothermal piping systems.

Who should attend: Heating contractors, geothermal contractors, builders, general contractors, hydronic designers, specifiers
Seminar length: 2 1/2 days (20 hours)

1.2 Skill Builders Condensed
This seminar is a condensed version of Skill Builders Complete. The first day includes technical information on core products such as RAUPEX pipes, EVERLOC fittings, PRO-BALANCE manifolds and the INSULPEX energy transfer piping system, followed by advanced radiant heating installation techniques for wet and dry applications, including the innovative RAUPANEL and RAUPLATE heating systems. The benefits of radiant heating systems are briefly explained. The second day focuses on the radiant design process, radiant materials estimating tips, hydronic snow and ice melting design and installation, plus an introduction to PEXa geothermal piping systems.

Who should attend: Heating installers and designers with some previous knowledge of radiant heating and snow and ice melting systems
Seminar length: 2 days (16 hours)

“The REHAU Academy Skill Builders training has resulted in a direct understanding of how I can achieve greater efficiencies in the way I do business. Receiving professional hands-on guidance on how to integrate solutions like REHAU PRO-BALANCE® manifolds and the RAUPANEL™ radiant heating system has helped me to streamline my system design and installation methods. Also, when I propose a project to a contractor or homeowner, I can say with full confidence that the REHAU products I am specifying offer the highest quality and performance efficiency of anything available on the market today.”

– Doug Santoro, principal of DJS Plumbing & Heating, Callicoon, NY
1.3 Geothermal Technology
This informative seminar provides an introduction to closed-loop geothermal systems, including heat pump technology, ground loop piping systems and industry regulations. Traditional HDPE piping systems using fusion connections and reverse-return headers are compared with the latest PEXa piping systems using ASTM F2080 compression-sleeve fittings and balancing distribution manifolds. Geothermal ground loop heat exchanger design steps are introduced, and an explanation of in-situ thermal conductivity testing is provided.

Who should attend: Heating contractors, geothermal contractors, builders, general contractors, facility managers, hydronic designers, specifiers
Seminar length: 1/2 day (4 hours)

1.4 Ground-air Heat Exchange Technology
This seminar is intended for potential installers and users of the REHAU ECOAIR™ ground-air heat exchange system, beginning with an explanation of the benefits of ground-air heat exchangers. Topics include design overview, installation techniques, maintenance requirements and system sizing.

Who should attend: Potential installers and users of the REHAU ECOAIR ground-air heat exchange system
Seminar length: 1/2 day (3 hours)
You can now attend a seminar on the most recent addition to our line of sustainable building technologies – the REHAU ECOAIR ground-air heat exchange system – shown here being installed at the James K. Polk Elementary School in the D.C.-metro area of Alexandria, Virginia.
REHAU heating, snow and ice melting and geothermal systems are great choices for today’s energy-conscious builders, specifiers and owners. To get the most out of these systems, they must be installed correctly. Our series of installation seminars gives contractors the essential knowledge and techniques to complete professional, high-performance installations. Contractors at all experience levels will find a seminar that’s right for them – from half-day introductory programs for those installing radiant heating for the first time to three-day IGSHPA certification courses.
2.1 Radiant Heating Installation
This seminar provides essential knowledge to install radiant floor heating (RFH) systems correctly using the right components. Even if you have been installing radiant systems for a while, you can learn time-saving professional installation techniques from REHAU’s experts. Topics include technical information on core products such as RAUPEX pipes, EVERLOC fittings and PRO-BALANCE manifolds, followed by advanced radiant installation techniques for wet and dry applications, including the innovative RAUPANEL and RAUPLATE heating systems. The benefits of radiant heating are reviewed.

Who should attend: Heating contractors/installers who are new to radiant heating
Seminar length: 1/2 day (5 hours)
2.4 RAUPANEL™ Installation Seminar
This seminar focuses on techniques for installing the RAUPANEL dry panel heating system in an existing building. This hands-on event concludes with students actually installing a RAUPANEL system over an existing floor and/or wall. Topics include planning, preparation and installation of RAUPANEL components with RAUPEX O₂ Barrier pipes and PRO-BALANCE distribution manifolds. Each student has a role in designing the panel layout and installing panels and pipes.

Who should attend: Heating contractors/installers who want hands-on experience with this innovative dry panel system
Seminar length: 1/2 day (4 hours)

2.5 Hydronic System Piping and Controls
This seminar provides options for designing mechanical room piping and for selecting the right controls for radiant heating and snow and ice melting (SIM) systems. Topics include single- and multi-temperature mixing control strategies, integrating ground source heat pumps, outdoor reset control, thermostat selection and zoning options.

Who should attend: Mechanical contractors who are familiar with radiant heating and SIM systems and want further information on hydronic controls
Seminar length: 1 day (6 hours)

2.6 RAUGEO™ System Installation
This seminar provides information about the RAUGEO PEXa ground loop heat exchange system, including technical capabilities of RAUGEO PEXa pipes, assembly of ASTM F2080 EVERLOC fittings and the configuration and assembly of various distribution manifolds. Topics also include relevant industry regulations, advantages of double U-bends and installation of spacers and other accessories. Certification for installing F2080 compression-sleeve fittings is offered.

Who should attend: Geothermal contractors, designers
Seminar length: 1/2 day (3 hours)
2.7 IGSHPA Accreditation Seminar for Geothermal Installers
This comprehensive certification seminar was developed to meet International Ground Source Heat Pump Association (IGSHPA) criteria. The IGSHPA Accredited Geothermal Installer seminar includes the fundamentals of closed-loop piping design, equipment sizing and installation methods for ground source heat pump (GSHP) applications. Topics also include crosslinked polyethylene (PEXa) pipe and ASTM F2080 compression-sleeve fittings, approved materials which were added to the IGSHPA Design and Installation Standards Manual in 2008. Upon successful completion of the seminar and passing the open book IGHPA installer exam, you will be issued IGSHPA accreditation as an installer of ground source heat pump systems. Certification for installing F2080 compression-sleeve fittings is offered.

Who should attend: Contractors and designers looking to acquire IGSHPA accreditation on both traditional piping systems and the latest PEXa technology
Seminar length: 3 days (24 hours)

2.8 IGSHPA Accreditation Seminar for Vertical Drillers
This comprehensive certification seminar was developed to meet International Ground Source Heat Pump Association (IGSHPA) criteria. The IGSHPA Accredited Vertical Loop Installer seminar includes the fundamentals of closed-loop piping design for vertical systems, equipment sizing and installation methods for vertical ground source heat pump (GSHP) applications. Topics also include crosslinked polyethylene (PEXa) pipe and ASTM F2080 compression-sleeve fittings, approved materials which were added to the IGSHPA Design and Installation Standards Manual in 2008. Upon successful completion of the seminar and passing the open book IGHPA vertical loop installer exam, you will be issued IGSHPA accreditation as a vertical loop installer. Certification for installing F2080 compression-sleeve fittings is offered.

Who should attend: Contractors and designers looking to acquire IGSHPA accreditation on both traditional piping systems and the latest PEXa technology for vertical applications
Seminar length: 3 days (24 hours)
Sustainable building technology systems provide comfort, control and efficiency and are great choices for today’s energy-conscious builders, specifiers and owners.

Our design seminars, created specially for audiences such as contractors, distributors and design engineers, provide the essential knowledge and application techniques to get the highest performance from these technologies.

3.1 Radiant Heating Design

This seminar provides a reliable design process for hydronic radiant systems, focusing on residential and light commercial applications. Topics include calculating heat loss, determining radiant pipe sizing and spacing, calculating flow rates, determining head loss and selecting circulators. Radiant materials estimating tips are also provided. No product or installation instruction is included in this seminar.

Who should attend: Heating contractors with prior radiant product and installation experience and a desire to design their own radiant systems, other hydronic designers

Seminar length: 1/2 day (4 hours)
3.2 Radiant Heating Design Workshop
This seminar provides a reliable design process for hydronic radiant systems in both residential and light commercial applications, starting with a definition of what makes a good radiant design. Topics include calculating heat loss, determining radiant pipe sizing and spacing, calculating flow rates, determining head loss and selecting circulators. A workshop session during which students design their own radiant system according to given parameters is included. Tips for estimating radiant materials are also provided. No product or installation instruction is included in this seminar.

Who should attend: Heating contractors with prior radiant product and installation experience and a desire to design their own radiant heating systems, other hydronic designers
Seminar length: 3/4 day (6 hours)

3.3 Hydronic Snow and Ice Melting Design
This seminar provides a reliable design process for hydronic snow and ice melting (SIM) systems, plus fundamental installation techniques. Topics include estimating heat loads, determining SIM pipe sizing and spacing, calculating flow rates, determining head loss and selecting circulators. In addition, identifying control strategies and a method for estimating operating costs are discussed.

Who should attend: Heating contractors with prior SIM product and installation experience and a desire to design their own SIM systems, other hydronic designers
Seminar length: 1/2 day (4 hours)

3.4 Radiant Heating and SIM Design
This seminar provides a reliable design process for hydronic radiant heating and snow and ice melting (SIM) systems. The radiant section focuses on residential and light commercial applications, starting with a definition of what makes a good radiant design. Topics include calculating heat loss, determining radiant pipe sizing and spacing, calculating flow rates, determining head loss, selecting circulators, sizing the expansion tank and calculating the effects of antifreeze. Radiant materials estimating tips are also discussed. Content on hydronic snow and ice melting design includes calculating heat loads, determining SIM pipe sizing and spacing, identifying control strategies and estimating SIM operating costs.

Who should attend: Heating contractors with prior radiant product and installation experience and a desire to design their own radiant and SIM systems, other hydronic designers
Seminar length: 1 day (8 hours)
3.5 Engineering Considerations for Radiant Heating Systems
This seminar provides a reliable design process for hydronic radiant heating systems for commercial applications, starting with a definition of what makes a good radiant design. The seminar references ASHRAE guidelines for floor temperatures and operative temperatures in radiant heated spaces. Topics include radiant pipe sizing and spacing, circuit lengths, flow rates and radiant system head loss. Finished flooring issues are also addressed. Tips for estimating radiant materials are provided. Brief product specifications are included in this seminar.

Who should attend: Mechanical engineers and MEP firms involved with space heating design
Seminar length: 1/2 day (4 hours)

3.6 Engineering Considerations for Radiant Cooling Systems
This seminar introduces radiant cooling as a technology for reducing operating costs and lowering carbon footprints while increasing occupant comfort in commercial applications. Using an academic approach, this seminar reviews results of a research project designed to evaluate various types of radiant cooling systems in comparison with traditional air handling equipment, while referencing ASHRAE guidelines for floor temperatures and operative temperatures in radiant cooled spaces. Topics include controlling radiant surface temperatures, dealing with surface condensation, identifying cooling control strategies, estimating capabilities of chilled panels and recognizing other hydronic considerations.

Who should attend: Mechanical engineers and MEP firms involved with space cooling design
Seminar length: 1/2 day (4 hours)
3.7 Engineering Considerations for Radiant Heating and SIM Systems

This seminar provides a reliable design process for hydronic radiant and snow and ice melting (SIM) systems for commercial applications, starting with a definition of what makes a good radiant design. The heating portion of the seminar references ASHRAE guidelines for floor temperatures and operative temperatures in radiant heated spaces. Topics include radiant pipe sizing and spacing, circuit lengths, flow rates and radiant system head loss. Finished flooring issues are also addressed. Tips for estimating radiant materials are provided. The SIM section includes estimating required design output, determining SIM pipe sizing and spacing, calculating flow rates, determining head loss and selecting circulators. In addition, identifying control strategies and a method for estimating SIM operating costs are discussed. Brief product specifications are included in this seminar.

Who should attend: Mechanical engineers and MEP firms involved with space heating and SIM design
Seminar length: 1 day (7 hours)

3.8 Engineering Considerations for Radiant Heating and Cooling Systems

This seminar introduces radiant heating and cooling technologies for reducing operating costs and lowering carbon footprints while increasing occupant comfort in commercial applications. Starting with a definition of what makes a good radiant design, this seminar provides a reliable design process for hydronic radiant systems while referencing ASHRAE guidelines for floor temperatures and operative temperatures in radiant heated spaces. Taking a more academic approach to radiant cooling, this seminar reviews results of a research project designed to evaluate various types of radiant cooling systems in comparison with traditional air handling equipment. Topics include controlling radiant surface temperatures, dealing with surface condensation, identifying cooling control strategies, estimating capabilities of heated and chilled panels and recognizing other hydronic considerations. Brief product specifications are included in this seminar.

Who should attend: Mechanical engineers and MEP firms involved with space heating and cooling design
Seminar length: 1 day (8 hours)
LUNCH AND LEARN SEMINARS
OVERVIEW

Our lunch and learn programs are held at REHAU Academy facilities, at engineering and architectural firms or at convenient hotel locations. These educational programs not only provide valuable insights that will help you integrate the latest technologies into your projects, but also may allow you to earn continuing education credits with various accreditation agencies in Canada and the United States.

Lunch and learn seminars are registered for 60 to 90 minutes, but can be extended with additional content. Certificates of participation are available upon request.

Visit na.rehau.com/academy frequently for current accreditations and new seminar topics.
4.1 Radiant Floor Heating Installation Techniques
This seminar provides a fundamental understanding of how to properly plan for installation of radiant floor heating systems into various construction techniques. Learning Objectives: 1. List the core components used in warm-water radiant floor heating systems; 2. Explain how to incorporate radiant floor heating into poured floor construction; 3. Determine the best pipe layout pattern for different areas with poured construction; 4. Design radiant floor heating into suspended floor construction with dry installation techniques; 5. Plan appropriate locations for radiant floor heating distribution manifolds.

Who should attend: Mechanical engineers and MEP firms involved with space heating design, architects, builders, design/build firms
Seminar length: 60 minutes

4.2 Radiant Heating Products and Design Process
This seminar provides a fundamental understanding of the core products used with radiant heating and the radiant design process. Learning Objectives: 1. List the core components used in warm-water radiant heating systems; 2. Summarize the boundaries of thermal comfort according to ASHRAE Standard 55, as related to radiant systems; 3. Explain the approach for selecting radiant pipe size and spacing for different applications; 4. Describe the factors which influence radiant fluid temperatures.

Who should attend: Mechanical engineers and MEP firms involved with space heating design, architects, builders, design/build firms
Seminar length: 60 minutes

4.3 Radiant Design Process and Control Options
This seminar provides a fundamental understanding of the radiant design process and the types of control systems which are used. Learning Objectives: 1. Describe the advantages of using radiant floor heating technology; 2. List application opportunities for radiant heating in residential, commercial, civic and institutional categories; 3. Utilize the design process for radiant heating systems to determine floor temperatures, pipe spacing and fluid flow rates; 4. Explain the types of control systems incorporated in radiant heating systems.

Who should attend: Mechanical engineers and MEP firms involved with space heating design, architects, builders, design/build firms
Seminar length: 60 minutes
4.4 Radiant Cooling Systems
This seminar provides a fundamental understanding of the options for incorporating radiant cooling into commercial project design. Learning Objectives: 1. Explain the basic principles of radiant cooling and the factors that affect thermal comfort; 2. Discuss how a radiant cooling system can be combined with an air handling unit to create a “hybrid” radiant cooling HVAC system which can address the concern of condensation; 3. List the factors that affect output capacities of a radiant cooling system; 4. Indicate how a radiant system leads to an improved building environment, in terms of thermal comfort and indoor air quality; 5. State the reasons that a “hybrid” cooling HVAC system can lead to reduced energy consumption; 6. Compare initial investment costs, operating costs and maintenance costs for a “hybrid” radiant cooling system; 7. Recognize the advantages of having a radiant heating/cooling system from an architectural perspective.

Who should attend: Mechanical engineers and MEP firms involved with space heating and cooling design, architects, builders, design/build firms
Seminar length: 75 minutes

4.5 Geothermal Piping Technology
This seminar provides a fundamental understanding of the latest PEXa geothermal systems and when to implement these technologies. Learning Objectives: 1. Explain the role of the ground loop heat exchanger and the physical demands placed on buried pipes; 2. Describe the capabilities and limits of the two most common types of geothermal piping systems; 3. Name the connection technologies available for these types of geothermal pipes; 4. Compare the advantages of three common manifold concepts for geothermal systems.

Who should attend: Mechanical engineers and MEP firms involved with geothermal heating and cooling systems, architects, builders, design/build firms
Seminar length: 60 minutes
4.6 Ground-air Heat Exchange Technology
This seminar provides a fundamental understanding of ground-air heat exchange (earth tube) technology and its role in providing energy-efficient ventilation in tightly-sealed buildings. Learning Objectives:
1. Examine how energy efficiency standards for buildings has evolved by demonstrating an understanding of ASHRAE standards; 2. Define the need for tightly sealed buildings to be properly ventilated using energy efficient technology; 3. Describe an earth tube, its function, components, and its role in ventilating a building; 4. Assess the contribution of earth tubes to the reduction of a building’s energy demands using empirical and comparative data; 5. Plan a basic layout of an earth tube for residential and commercial applications; 6. Propose incorporation of an earth tube into a project owner’s building design using existing installations and performance estimates.

Who should attend: Mechanical engineers and MEP firms involved with space heating and cooling design, architects, builders, design/build firms
Seminar length: 75 minutes

4.7 Integration of Sustainable Building Technologies
This seminar provides a fundamental understanding of how to integrate multiple sustainable building technologies into commercial project design. Learning Objectives: 1. List contemporary sustainable technologies for efficient heating and cooling systems and the building envelope; 2. Assess the contribution of a ground-air heat exchanger to the reduction of a building’s energy demands; 3. Explain how a hydronic radiant heating/cooling system leads to improved thermal comfort and acoustics; 4. Describe the integration of ground source geothermal systems with hydronic distribution for optimum efficiency; 5. Indicate how a hydronic snow and ice melting system can sustain outdoor surfaces while reducing maintenance costs; 6. Demonstrate applications for polymer window systems in sustainable design; 7. Recognize the best applications for each of these technologies.

Who should attend: Mechanical engineers and MEP firms involved with space heating and cooling design, architects, builders, design/build firms
Seminar length: 90 minutes
4.8 Compression-seal Technology for Windows and Doors
This seminar provides a fundamental understanding of the types of compression-seal technology used in high-performance window and door systems and the benefits of each. Learning Objectives: 1. State the definition of compression-seal technology; 2. Explain how a compression seal functions; 3. Describe the performance benefits of compression-seal windows and doors; 4. List the product configurations using compression-seal technology; 5. Recognize the best applications of compression-seal technology.

Who should attend: Architects, builders, design/build firms, project owners
Seminar length: 60 minutes

4.9 High-performance Framing Materials for Windows and Doors
This seminar provides a fundamental understanding of the latest high-performance framing materials used in commercial window and door systems and the pros and cons of each. Learning Objectives: 1. List the range of materials currently available for windows and doors; 2. Describe the benefits of each material; 3. Explain market trends and drivers affecting material selection; 4. Recognize the best applications of each material.

Who should attend: Architects, builders, design/build firms, project owners
Seminar length: 60 minutes
“I’ve been involved in the heating business for over 35 years, and I still get excited about every REHAU project I sell. They have great products, and their team is first class. Their training is the best in the industry and they have great turnaround on project designs, which helps me to close the sale quickly. Our REHAU sales are growing everyday.”

– Bill Walsh, president and owner, Aird Dorrance, Inc.
In 2011, REHAU is introducing new design software for radiant heating and snow and ice melting applications in cooperation with Avenir Software Inc. With LoopCAD software, the non-engineer user is able to prepare pipe layout drawings with the graphical version and to perform design calculations with the non-graphical version.

The following half- to full-day seminars help experienced radiant system designers quickly get up to speed with the new software.

5.1 REHAU LoopCAD PRO 2011
This seminar introduces the new REHAU LoopCAD PRO 2011 graphical design software for radiant heating and snow and ice melting (SIM) systems, and provides students with a good working knowledge of how to perform system design calculations and prepare radiant heating and SIM pipe layout drawings using this new product. Topics include calculating building heat loss, determining radiant pipe design and circuit lengths, drawing pipe layouts and creating exportable customer files.

Who should attend: Radiant designers with knowledge of products and design and good working knowledge of general computer programs; AutoCAD® knowledge is not required

Seminar length: 1 day (8 hours)

5.2 REHAU LoopCAD 2011 Non-graphical
This seminar introduces the new REHAU LoopCAD 2011 non-graphical design software for radiant heating and snow and ice melting (SIM) systems, and provides students with a good working knowledge of how to perform system design calculations for radiant heating and SIM projects using this new product. Topics include calculating building heat loss, determining the radiant pipe design and creating exportable customer files.

Who should attend: Radiant designers with knowledge of products and design and good working knowledge of general computer programs

Seminar length: 1/2 day (4 hours)
Through Ron Blank, AIA cornerstone partner and continuing education specialist, REHAU enables registered architects and other design professionals to earn continuing education credits by taking online courses.

You can access these courses through our website at na.rehau.com/academy. Additional courses will be developed during 2011.

6.1 Radiant Floor Heating Installation Techniques (No. REH23B)
This online seminar provides a fundamental understanding of how to properly plan for installation of radiant floor heating (RFH) systems into various construction techniques. Learning Objectives: 1. List the core components used in RFH systems; 2. Explain wet installation techniques and how to incorporate RFH into different construction methods; 3. Explain dry installation techniques and how to incorporate RFH into different construction methods; 4. Describe best locations for placement of distribution manifolds.

Who should attend: Architects, engineers, design/build firms
Seminar length: Can be completed online in 1 hour plus quiz
Credits: 1 AIA/CES LU/HSW Hour

6.2 Radiant Heating Design Process and Control Options (No. REH23C)
This online seminar provides a fundamental understanding of the radiant design process and the types of control systems which are used. Learning Objectives: 1. Describe the advantages of using radiant floor heating (RFH) technology; 2. List several application options for RFH including residential, commercial, civic, industrial and institutional applications; 3. Follow the design process for radiant heating systems to determine heat loss, floor temperatures, piping layouts and fluid temperatures; 4. Explain the basic control systems incorporated in radiant heating systems.

Who should attend: Architects, engineers, design/build firms
Seminar length: Can be completed online in 1 hour plus quiz
Credits: 1 AIA/CES LU/HSW Hour
REHAU’s contribution to the construction and renovation of high-efficiency buildings is unmatched in its quality and breadth.

From generating renewable energy using geothermal probes to distributing it efficiently through radiant heating and cooling pipes, our HVAC solutions deliver sustainable comfort. By using our high-performance uPVC window and door designs, you can create thermally efficient walls of glass that seal in this sustainability.

With a product range that encompasses the building envelope and HVAC systems, we are uniquely qualified to help design teams optimize building performance. Invite us to the dialog early in the planning phase of your building project and we will help you achieve sustainable whole-building design.