UNDERGROUND THERMAL ENERGY STORAGE
STORING EXCESS ENERGY UNDERGROUND TO IMPROVE SYSTEM EFFICIENCY
Underground Thermal Energy Storage (UTES) is the concept of storing excess heat in the ground in the summer, to then be extracted in the winter. Renewable energy sources such as solar thermal produce most of their heat when it is not required and hence, it is wasted. For this reason, it is becoming increasingly common to use integrated seasonal heat storage to improve the total system efficiency.
An Underground Thermal Energy Storage (UTES) system is ideal for systems with at least a 100kW energy requirement (predominantly heat) and a storage volume of >10,000m³.

The three main components of the system:

- Heat Source (e.g. solar thermal, solar absorbers or industrial waste heat)

- Borehole Thermal Energy Storage (BTES) – the method of storing the energy

- Heat Distribution, typically via a district/community heat network

Alongside the three main components above, the system would typically require a short-term buffer tank (for peak loads), a high temperature ground source heat pump (GSHP) and a peak load boiler is often used as a backup for peak times.

REHAU, together with our partners, can assist in assessing the feasibility of a UTES scheme. Please contact REHAU to discuss your project requirements.
Solar Thermal

The most commonly used heat source on UTES schemes are solar thermal panels. With large scale solar thermal arrays, there are often economies of scale and in addition to this, the Renewable Heat Incentive (RHI) will provide income for solar thermal installations for every kWh produced. The main advantage of solar thermal is the high temperature achieved but a large solar array can be a significant proportion of the total system cost.

Solar Absorbers

Another way of capturing solar energy is through solar absorbers, where pipework is installed just below a concrete or asphalt surface. Although this doesn’t reach as high temperatures as solar thermal, it can be a more cost-effective installation. REHAU offers two types of pipework for these applications, RAUWAY Stabil and RAUWAY Flex.

RAUWAY Stabil is a special multilayered PE-Xa pipe with an outer PE layer, which is suitable for installations in cast and rolled asphalt at temperatures of up to 240°C.

RAUWAY Flex is a PE-Xa pipe with outer PE layer, suitable for installations in concrete (max. 95°C). Both these pipes can also be used for any outdoor surface de-icing for infrastructure applications, such as roads. (example shown to the right)

Waste heat from CHP/Industry

Combined heat & power (CHP) units are an efficient way of producing space heating and electricity and are often linked with district heating schemes. In some cases, only the electricity output is used and the heat produced is ejected into the atmosphere, wasting huge amounts of energy. Instead, this waste heat can be stored in boreholes to be used in a UTES system. The same concept applies to chillers and condensers which typically eject heat into the atmosphere via the roofs of commercial buildings such as supermarkets and offices.

To discuss if your heat source is viable for a UTES Scheme, please contact REHAU to discuss your project.
The optimum method of storing heat underground is by using ground source probes due to the greater depths involved. However, the choice of probe material is critical for a successful operation. Standard PE 100 material has a temperature range of -20°C to +40°C, whereas for BTES systems, the heat is often stored in the ground using water at 60-80°C, therefore outside the operating range of PE 100.

Solution:
RAUGEO PE-Xa probes are ideal for BTES applications due to their high temperature resistance (-40°C to +95°C) and robust design. Due to the improved bending radius of PE-Xa, the unique probe tip is jointless, offering excellent reliability.

Benefits of PE-Xa probes
- High temperature resistance
- Jointless probe tip offers highest reliability
- Excellent resistance to point loads and notches & grooves
- Uses the leakproof Everloc jointing system
- 10 year consequential loss warranty for every PE-Xa probe installed

A BTES probe field differs from a standard GSHP application as the main objective is to store heat effectively, therefore the design is based around these key considerations:
- Installation depth typically 30-50m
- No groundwater flow
- Probe spacing 3-4m (normally 6m)
- Insulation above the probes to reduce heat losses
RAUTHERMEX:
- Closed cell polyurethane (PU) foam for optimum insulation
- No thermal expansion
- Generation II shroud system removes need for hot works
- No water ingress if LDPE outer jacket is punctured
- 25-160mm UNO and 25-63mm DUO pipes available

RAUVITHERM:
- Open cell cross-linked PE foam for high insulation
- High flexibility due to open cell design
- Robust HDPE outer jacket to prevent damage on site
- Outer insulation layer bonded to outer jacket to prevent water ingress
- 25-125mm UNO and 25-63mm DUO pipes available

For a UTES scheme with a large number of separate buildings, such as a housing development, a district heating (DH) network would be the preferred choice for transporting the excess heat from the solar thermal panels to the boreholes in the summer and then distributing the heat in winter around the dwellings.

REHAU is one of the UK market leaders in pre-insulated pipe and has been involved in many community and district heating schemes across the UK and Europe. Modern low-temperature DH systems are increasingly using polymer due to the benefits of high flexibility, simpler installation and the long coil lengths offered. REHAU has two pre-insulated cross-linked polyethylene (PE-Xa) pipes for district heating, RAUTHERMEX and RAUVITHERM. Both are suitable up to 95°C and 6 bar and use the renowned leakproof REHAU EVERLOC™ compression sleeve technology.

REHAU can assist in pipe sizing and materials list for your DH schemes. Please contact your local REHAU sales office for further information.
Crailsheim, Germany
This is one of the largest seasonal heat storage projects in Germany, supplying heat to 260 houses and local community buildings, in total 4,100 MWh/a. There is over 7,000m² of solar thermal collectors and a 750kW heat pump with supplementary heat coming from a district heating network. The BTES storage is 43,200m³, comprising of 80 RAUGEO PE-Xa probes and associated short term buffer tanks.

Braedstrup Solar District Heating, Denmark
Braedstrup Solar District Heating scheme is one the largest of its type in Europe, comprising of 1400 homes requiring 40GWh/a of heat. The 18,000m² solar thermal panels are now linked up to a BTES system of 50 RAUGEO PE-Xa probes at depths between 45-50m over an area of 225m². In phase one the solar fraction is estimated to go from 10-20%. (More information can be found at www.braedstrup-fjernvarme.dk).

Drake Landing Solar Community, Okotoks, Canada
This 52 house community integrates 800 roof mounted solar thermal collectors (approx. 2,300m²) with a BTES system of 144 RAUGEO PE-Xa probes at 35m depth. Live performance data can be found on their website at www.dlsc.ca. The temperature being stored in the probes often exceeds 50-60°C, showing why PE-Xa has to be used for BTES projects.

Suffolk One College, England
In conjunction with one of our partners, ICAX, this sixth form college in Suffolk used a 1,560m² bus turning area as a solar absorber (approx. 14km of 25mm RAUGEO PE-Xa pipework) and 10 PE-Xa probes at 100m depth for the BTES system. For more information on this project and other similar schemes, see www.icax.co.uk.
Our verbal and written application engineering advice is based upon experience and the best of our knowledge. However it is to be regarded as non-binding information.

Working conditions and use under conditions for which the product was not intended and over which we have no influence exclude any claim resulting from our information.

We recommend that a suitable check is made as to whether the REHAU product is suitable for the envisaged purpose. Application, use and processing of the products is carried out beyond the scope of our control and are therefore carried out exclusively at your own responsibility. If liability should still apply, then this is restricted, in the case of all damage, the value of the goods supplied by us and used by you.

Our warranty applies to the consistent quality of our products as per our specification and in accordance with our general terms and conditions of delivery and payment.

This document is protected by copyright. All rights based on this are reserved. No part of this publication may be translated, reproduced or transmitted in any form or by any similar means, electronic or mechanical, photocopying, recording or otherwise, or stored in a data retrieval system.