

Engineering progress Enhancing lives

System regulacji NEA SMART 2.0

Zastosowanie TABS BKT – oBKT – IFHK Funkcja – Konfiguracja – Obsługa

System regulacji NEA SMART 2.0

Zastosowanie TABS BKT – oBKT – IFHK

Funkcja – Konfiguracja – Obsługa

Wersja 07/2022 – TABS – Zastosowania w systemach grzewczych

Spis treści

02	Wprowadzenie	05
03	Funkcje ogólne	06
03.01 03.02	Specjalne wymagania dotyczące regulacji TABS Regulacja temperatury w większych	06
	pomieszczeniach	06
03.03	Uwzględnienie wysokiej masy termicznej	06
03.04	Uwzględnienie wartości projektowych	07
03.05	Sterowanie obciążeniem BKT: obciążanie	07
02.00	rdzenia poza godzinami uzytkowania	07
03.00	Lączenie z innymi systemami promiennikowymi	07
03.07	Osuszacze powietrza i kumakonwektory	07
04	Projekt systemu regulacji NEA SMART 2.0	
	wyposażonego w TABS	08
04.01	Definicja stref objętych systemem regulacji (CA)	80
04.02	Monitorowanie temperatury rdzenia i temperatury	
	powrotu.	80
04.03	Łączenie innych systemów z TABS	80
04.04	Przykłady zastosowań TABS	09
04.04.01	1 jednostka pokojowa z systemem BKT (bez CA)	09
04.04.02	CA (3 jednostki pokojowe) z BK I,	00
04.04.03	CA (2 jednostki pokojowe) z oBKT.	09
	ogrzewaniem podłogowym i klimakonwektorem	09
04.05	Dodatkowa jednostka pokojowa do pomiaru	
	temperatury powrotu / temperatury rdzenia	10
04.06	Zalecana procedura projektowania systemu	10
05	Instalacia komponentów	11
05.01	Jednostki pokojowe w strefach objętych systemen	ו
	regulacji	11
05.02	Czujnik temperatury rdzenia	11
05.03	Czujnik temperatury powrotu	11
06	Konfiguracja za pomocą kreatora	12
06.01	Przykładowa instalacja	12
06.02	Konfiguracja z wykorzystaniem arkusza	
	kalkulacyjnego programu Excel	13

04

01

Bezpieczeństwo

06.03	Rozmieszczenie regulatorów pokojowych	14
06.04	Kreator	15
06.04.01	lyp systemu	15
06.04.02	Elementy systemu	15
06.04.03	Ustawienia TABS	15
06.04.04	Definicie modułów II	10
06.04.05	Medul I dle objegu z podmioszoniem (oPKT)	10
06.04.00	Podzaj obiogów z podmioszaniem	10
00.04.07	nouzaj oblegow z podmieszameni,	17
06 04 08	Osuszącz powietrzą klimakonwektor	17
06.04.09	Przyporządkowanie do strefy objętej	17
00.01.00	systemem regulacii (CA)	17
06 04 10	Definicie stref pokojowych	18
06.04.11	Weiścia/wyiścia cyfrowe	18
06.04.12	Kończenie pracy z kreatorem	18
07	Konfiguracja i ustawienia z poziomu instalatora	
	(strony internetowe)	19
07.01	Konfiguracja jednostek pokojowych	19
07.02	Punkt menu "Ustawienia" w menu instalatora	21
07.02.01	Ustawienia TABS	22
07.02.02	Obiegi z podmieszaniem	22
07.02.03	Parametry sterujące	23
07.02.04	Sterowanie obciążeniem BKT	23
08	Obsługa przez użytkownika	24
08.01	Poziomy użytkownika na stronach internetowych	24
08.02	Jednostki pokojowe	24
08.03	Obsługa za pomocą aplikacji	24
09	Parametry istotne dla TABS	25
09.01	Ustawienia TABS	25
09.02	Obiegi z podmieszaniem	26
09.02.01	Obiegi grzewcze	26
09.02.02	Obiegi chłodzące	27
09.03	Ustawienia parametrów sterujących	28
10	Wskazówki dotyczące optymalizacji	29

Piktogramy i oznaczenia

Ostrzeżenia i uwagi ogólne są oznaczone symbolami podanymi poniżej.

04

Napięcie elektryczne zagrażające życiu

Wskazówka dotycząca bezpieczeństwa

Informacje prawne

Ważne informacje

Wskazówki dotyczące bezpieczeństwa i sposobu obsługi

- Przed przystąpieniem do montażu należy dla własnego bezpieczeństwa i bezpieczeństwa innych osób przeczytać z uwagą wszystkie wskazówki dotyczące bezpieczeństwa oraz instrukcje obsługi.
- Instrukcje obsługi należy przechowywać w łatwo dostępnym miejscu.
- W przypadku niezrozumienia wskazówek dot. bezpieczeństwa lub poszczególnych instrukcji montażu lub uznania ich za niejasne należy skontaktować się z biurem handlowo-technicznym REHAU.
- Nieprzestrzeganie wskazówek dotyczących bezpieczeństwa może prowadzić do szkód rzeczowych i osobowych.

Zgodność wyrobu

Spółka REHAU Industries SE & Co. KG oświadcza niniejszym, że system NEA SMART 2.0 jest zgodny z następującymi dyrektywami UE:

Typy urządzeń nieradiowych:

- 2014/30/UE
- 2014/35/UE
- 2011/65/UE

Typy urządzeń radiowych

- 2014/53/UE
- 2011/65/UE

Pełen tekst deklaracji zgodności UE można pobrać ze strony internetowej: www.rehau.com/neasmart2

Typy urządzeń radiowych:

- Częstotliwość: 869 MHz
- Moc transmisyjna: maks. +12dBm

Stosowanie zgodne z przeznaczeniem

System regulacji NEA SMART 2.0 może być projektowany, instalowany i eksploatowany wyłącznie w sposób opisany w niniejszej instrukcji serwisowej i pozostałej dokumentacji systemu. Wszelkie inne sposoby użycia są niezgodne z przeznaczeniem i tym samym niedozwolone.

Podczas montażu instalacji rurowych i urządzeń elektrycznych należy przestrzegać wszystkich krajowych i międzynarodowych przepisów dotyczących prowadzenia instalacji, przepisów bezpieczeństwa i higieny pracy oraz stosować się do wskazówek zawartych w niniejszej instrukcji technicznej.

W przypadku zastosowań nieopisanych w niniejszej instrukcji serwisowej (zastosowań specjalnych) należy skontaktować się z naszym działem technicznym. Prosimy o kontakt z biurem handlowo-technicznym REHAU.

Wymagania dotyczące personelu

- Montaż naszych systemów należy powierzyć wyłącznie uprawnionym i wykwalifikowanym monterom.
- Prace przy instalacjach lub urządzeniach elektrycznych mogą być wykonywane wyłącznie przez przeszkolony w tym zakresie i posiadający stosowne uprawnienia personel.

Ogólne środki ostrożności

- Miejsce pracy należy utrzymywać w czystości. Usunąć wszelkie przeszkody utrudniające wykonywanie pracy.
- Należy zapewnić wystarczające oświetlenie miejsca pracy.
- Dzieci i zwierzęta domowe oraz osoby nieuprawnione nie powinny mieć dostępu do narzędzi i miejsc wykonywania montażu. Szczególną ostrożność należy zachować przede wszystkim podczas remontów prowadzonych w pomieszczeniach mieszkalnych.

02 Wprowadzenie

Niniejszy podręcznik jest uzupełnieniem instrukcji serwisowej NEA SMART 2.0 dla projektantów, instalatorów i partnerów serwisowych. Dodatkowo należy uwzględnić wszystkie informacje podane w podstawowej instrukcji serwisowej NEA SMART 2.0.

Niniejszy dokument opisuje specjalne rozwiązania i funkcje rozszerzenia oprogramowania do stosowania wolno reagujących systemów ogrzewania i chłodzenia płaszczyznowego BKT, oBKT i IFHK – określanych łącznie pod pojęciem TABS.

Stosowane pojęcia:

TABS:

systemy termicznej aktywacji budynku

BKT:

aktywacja termiczna stropów – rury są osadzone w stropie betonowym

oBKT:

przypowierzchniowy system BKT – rury są osadzone przy powierzchni betonowego stropu

IFHK:

system przemysłowego ogrzewania i chłodzenia podłogowego

HVAC:

ogrzewanie, wentylacja, klimatyzacja

Jednostka pokojowa:

wszystkie regulatory pokojowe NEA Smart 2.0 lub czujniki pokojowe NEA Smart 2.0.

Oznaczona na rysunkach i wykresach literami RU (Room Unit).

Strefa objęta systemem regulacji (CA):

połączenie kilku jednostek pokojowych w jednym większym pomieszczeniu w celu uśrednienia wartości pomiarowych. Strefa objęta systemem regulacji jest określana w skrócie jako CA (Control Area) Funkcje dla zastosowań TABS w trybie ogrzewania są dostępne od wersji oprogramowania V3.0.

Opisane w niniejszym podręczniku funkcje dotyczące zastosowań w systemach chłodzenia są dostępne od kwietnia 2023 roku.

Wersję oprogramowania można sprawdzić na zintegrowanych stronach internetowych w punkcie menu "System" oraz w aplikacji mobilnej w punkcie "Ustawienia", "Ogólne". Jeśli system ma starszą wersję oprogramowania, należy przeprowadzić aktualizację over--the-air.

Uwaga

Jednostki pokojowe HBW i HRW wymagane do pomiaru temperatury rdzenia lub temperatury powrotu są dostępne od zaraz wraz z wersją oprogramowania 1.6 lub wyższą.

Inne jednostki pokojowe wyposażone w te funkcje będą wprowadzane do oferty.

03 Funkcje ogólne

W niniejszym rozdziale opisano wszystkie funkcje specjalne zastosowań TABS Zastosowania TABS można łączyć z wszystkimi innymi funkcjami i zastosowaniami oferowanymi przez system NEA SMART 2.0.

03.01 Specjalne wymagania dotyczące regulacji TABS

Najważniejszym aspektem jest większa masa termiczna wszystkich systemów termicznej aktywacji budynku w porównaniu do płaszczyznowych systemów posadzkowych, ściennych i sufitowych. Ta duża masa termiczna może prowadzić do przekroczenia temperatury w pomieszczeniu, szczególnie podczas uruchamiania systemu lub zmiany ze zredukowanego trybu pracy na normalny.

W celu zminimalizowania tego problemu konieczne jest monitorowanie temperatury rdzenia lub – jeśli nie jest to możliwe – temperatury powrotu.

W niektórych zastosowaniach zaleca się obciążanie systemu TABS BKT na przykład tylko w nocy, podczas gdy system HVAC lub inne systemy płaszczyznowe działają w ciągu dnia. W takim przypadku konieczne jest zapewnienie dobrej kontroli obciążenia rdzenia.

W budynkach użytkowych regulacja obejmuje często większe powierzchnie, takie jak biura typu "open space" czy hale i salony wystawowe. W takich przypadkach, w pomieszczeniach tej wielkości, zaleca się stosowanie kilku jednostek pokojowych.

W tym zakresie odsyłamy do następnego rozdziału.

03.02 Regulacja temperatury w większych pomieszczeniach

Regulacja temperatury w większych pomieszczeniach, takich jak biura typu "open space", hale przemysłowe, salony wystawowe itp., z zastosowaniem jednego tylko urządzenia pokojowego jest nieskuteczna. To samo dotyczy zastosowań w budynkach mieszkalnych, np. w dużych pokojach dziennych połączonych z kuchnią i jadalnią.

Zaleca się umieszczenie jednostek pokojowych w różnych miejscach i wykorzystanie średniej wartości wszystkich zmierzonych temperatur jako wartości wejściowej dla algorytmu regulacji.

Oprogramowanie bazy dopuszcza w tym celu zdefiniowanie tak zwanych stref objętych systemem regulacji (Control Area, CA). W jednej CA znajduje się kilka jednostek pokojowych. Algorytm regulacji wykorzystuje średnią wartość wszystkich temperatur w pomieszczeniu oraz najwyższą wartość wilgotności względnej i temperatury punktu rosy.

Strefa objęta systemem regulacji jest wyświetlana w aplikacji oraz w strefie użytkownika na zintegrowanych stronach internetowych jako jedno pomieszczenie.

W przypadku jednostek pokojowych z wyświetlaczem każda zmiana wartości zadanej wprowadzona w jednej jednostce jest przenoszona na pozostałe.

Wskazówka:

Stosowanie stref objętych systemem regulacji nie ogranicza się tylko do TABS. Jedna strefa objęta systemem regulacji może zawierać też inne systemy płaszczyznowe lub klimakonwektory w połączeniu z TABS lub nie.

(\mathbf{i})

Strefa objęta systemem regulacji stanowi zgrupowanie jednostek pokojowych w celu uzyskania średnich wartości temperatury pokojowej, temperatury powrotu lub temperatury rdzenia oraz najwyższej wartości względnej wilgotności powietrza.

03.03 Uwzględnienie wysokiej masy termicznej

Algorytm regulacji TABS składa się z dwóch części:

- regulatora temperatury pokojowej (regulacja proporcjonalna – integralna)
- regulatora temperatury rdzenia (proporcjonalna)

Obie te części są łączone w jeden wspólny sygnał sterujący, ale ważone różnymi współczynnikami w zależności od typu TABS.

Jeżeli w fazie nagrzewania temperatura w pomieszczeniu będzie o wiele niższa od wartości zadanej, nagrzewanie rdzenia będzie ograniczone nawet po osiągnięciu jego wartości zadanej (zgodnie z wartościami projektowymi). Ma to na celu uniknięcie znacznego przekroczenia temperatury pokojowej.

W innym przypadku, gdy temperatura w pomieszczeniu jest bliska wartości zadanej (lub nawet nieco powyżej), ale temperatura rdzenia jest nadal zbyt niska, nagrzewanie rdzenia jest kontynuowane w sposób umiarkowany.

07

Domyślne ustawienie wagi temperatury rdzenia i temperatury pokojowej wynosi 1:1. Jeśli temperatura w pomieszczeniu przez dłuższy czas utrzymuje się powyżej lub poniżej wartości zadanej, można zwiększyć jej wagę.

Dostępne są następujące możliwości kontrolowania temperatury rdzenia:

- bezpośrednio przez umieszczenie sondy w rdzeniu (betonowym) lub
- pośrednio przez umieszczenie sondy na powrocie jednego z obiegów grzewczych pomieszczenia lub strefy objętej systemem regulacji.

Jako czujniki temperatury powrotu i temperatury rdzenia zastosowanie znajdują czujniki NEA SMART 2.0 VL/RL (numer artykułu: 13280391001), które podłącza się do zewnętrznego wejścia "Remote Sensor NTC" jednostki pokojowej.

Funkcję zewnętrznego wejścia konfiguruje się jak niżej:

P9 do pomiaru temperatury rdzeniaP10 do pomiaru temperatury powrotu

Uwaga:

W przypadku braku możliwości wykorzystania jednej z jednostek pokojowych zainstalowanych w pomieszczeniu (brak możliwości doprowadzenia kabla od czujnika temperatury do rozdzielacza) istnieje możliwość umieszczenia dodatkowej jednostki pokojowej służącej tylko do pomiaru temperatury powrotu lub temperatury rdzenia przy rozdzielaczu.

W takim przypadku należy wyłączyć pomiar temperatury pokojowej na tej jednostce pokojowej, aby uniknąć zafałszowania pomiaru temperatury w pomieszczeniu lub strefie objętej systemem regulacji.

Przeprowadza się to na stronie konfiguracji pomieszczenia w strefie instalatora.

03.04 Uwzględnienie wartości projektowych

Podczas konfiguracji systemu za pomocą kreatora można wprowadzać wartości projektowe. Wartości projektowe określają temperaturę zasilania i powrotu przy temperaturze zewnętrznej wynoszącej –15°C. W przypadku wybrania tej opcji krzywa grzewcza wynikająca z tych wartości jest obliczana dla temperatury zasilania i dla temperatury powrotu.

Obieg z podmieszaniem przeznaczony do TABS i sterowany przez system NEA SMART 2.0 automatycznie wykorzystuje wynikową krzywą grzewczą do regulacji temperatury zasilania.

W przypadku niedostępnych wartości projektowych istnieje możliwość ręcznego wprowadzenia wartości

dla krzywych grzewczych: "nachylenie krzywej grzewczej – zasilanie" und "nachylenie krzywej grzewczej – powrót".

03.05 Sterowanie obciążeniem BKT: obciążanie rdzenia poza godzinami użytkowania

Dostępny jest specjalny tryb pracy systemów BKT, który polega na obciążaniu BKT do zdefiniowanego poziomu temperatury w godzinach nocnych w trybie ogrzewania lub chłodzenia.

Ma to na celu wykorzystanie zainstalowanej wydajności grzewczej lub chłodniczej w ciągu dnia wyłącznie dla innych systemów, takich jak HVAC lub innych systemów płaszczyznowych.

03.06 Łączenie z innymi systemami promiennikowymi

Istnieje możliwość łączenia TABS z innymi systemami ogrzewania i chłodzenia płaszczyznowego, np. podłogowego, ściennego lub sufitowego.

03.07 Osuszacze powietrza i klimakonwektory

Do pomieszczeń i stref objętych systemem regulacji można przyporządkować zdefiniowane osuszacze powietrza i klimakonwektory. Jedna strefa objęta systemem regulacji odpowiada pojedynczemu pomieszczeniu, co oznacza, że w jednej strefie objętej systemem regulacji może znajdować się tylko 1 osuszacz powietrza i 1 klimakonwektor.

04 Projekt systemu regulacji NEA SMART 2.0 wyposażonego w TABS

04.01 Definicja stref objętych systemem regulacji (CA)

W pomieszczeniach większych niż 40 lub 50 m² zaleca się umieszczenie więcej niż 1 jednostki pokojowej, aby uzyskać bardziej wiarygodny pomiar temperatury pokojowej, wilgotności powietrza oraz temperatury powrotu lub rdzenia.

Nie ma uzasadnienia definiowanie stref objętych systemem regulacji, które obejmowałyby więcej niż jedno pomieszczenie.

Uwaga! Należy pamiętać:

Nie ma możliwości tworzenia stref objętych systemem regulacji zawierających jednostki pokojowe, które są połączone z różnymi bazami NEA SMART 2.0 jednego systemu master i slave.

Jedna strefa objęta systemem regulacji jest zawsze ograniczona do jednej bazy NEA SMART 2.0 i jej modułu R.

04.02 Monitorowanie temperatury rdzenia i temperatury powrotu.

W celu zapewnienia prawidłowej charakterystyki regulacyjnej należy zastosować czujniki temperatury powrotu lub temperatury rdzenia – po jednym dla każdego pomieszczenia lub co najmniej po jednym w każdej strefie objętej systemem regulacji.

Wejście pomocnicze jednostek pokojowych może być skonfigurowane do obsługi różnych sygnałów wejściowych – do pomiaru temperatury powrotu lub temperatury rdzenia w zastosowaniach TABS. Możliwe jest stosowanie obu typu sygnałów w ramach jednej strefy objętej systemem regulacji.

Zmierzona temperatura rdzenia lub temperatura powrotu jest zawsze przyporządkowana do konkretnego pomieszczenia lub strefy objętej systemem regulacji. W sytuacji, gdy nie ma możliwości podłączenia czujnika temperatury powrotu lub temperatury rdzenia do jednostki pokojowej zainstalowanej w pomieszczeniu lub strefie objętej systemem regulacji, dostępne jest następujące rozwiązanie:

- Umieścić jednostkę pokojową z oprogramowaniem w wersji 1.6 lub wyższej w pobliżu rozdzielacza (np. w szafie rozdzielczej).
- Zamocować czujnik temperatury na przewodzie powrotnym lub – jeśli to możliwe – umieścić czujnik temperatury w rdzeniu betonowym.

rdzenia) lub P10 (pomiar temperatury powrotu) bezpośrednio na jednostce pokojowym lub w obszarze instalatora na stronach internetowych w menu "Pomieszczenia".

 Dezaktywować w konfiguracji pomiar temperatury w pomieszczeniu dla tej jednostki pokojowej, aby uniknąć zafałszowania pomiaru temperatury w pomieszczeniu przez niereprezentatywną wartość temperatury w szafie rozdzielczej.

Uwaga:

Pomiar temperatury powrotu w obiegu z podmieszaniem (moduł U w konfiguracji "obieg z podmieszaniem" – wejście analogowe AI2) nie ma wpływu na charakterystykę regulacyjną TABS w trybie ogrzewania. W trybie chłodzenia temperatura zasilania jest korygowana, jeśli temperatura powrotu spadnie poniżej zdefiniowanej granicy (patrz parametr CD).

04.03 Łączenie innych systemów z TABS

Dodatkowe systemy, takie jak systemy promiennikowe, osuszacze powietrza i klimakonwektory, można integrować z pomieszczeniami lub strefami objętymi systemem regulacji zasilanymi przez TABS.

Uwaga! Należy pamiętać:

Jedna strefa objęta systemem regulacji wymaga co najmniej tylu stref pokojowych (RZ) bazy NEA SMART 2.0, ile jest jednostek pokojowych przypisanych do strefy objętej systemem regulacji.

Uwaga:

Każda strefa pokojowa należąca do strefy objętej systemem sterowania może być wykorzystana do innego systemu.

W następnym rozdziale przedstawiono różne możliwości.

Aktywować parametr P9 (pomiar temperatury

04.04 Przykłady zastosowań TABS

04.04.01 1 jednostka pokojowa z systemem BKT (bez CA)

Do 1 jednostki pokojowej przyporządkowano 1 strefę pokojową z systemem BKT; dla systemu BKT skonfigurowano czujnik temperatury powrotu. W tym pomieszczeniu można by umieścić dodatkowo osuszacz powietrza i/lub klimakonwektor.

04.04.02 CA (3 jednostki pokojowe) z BKT, ogrzewaniem podłogowym i klimakonwektorem

Każda jednostka pokojowa jest wykorzystywana do innego systemu (nie jest to obowiązkowe). Dla BKT stosowany jest 1 czujnik temperatury powrotu i 1 temperatury rdzenia.

Wskazówka:

Pomiar temperatury powrotu i temperatury rdzenia można łączyć w jednej strefie objętej systemem regulacji.

04.04.03 CA (2 jednostki pokojowe) z oBKT, ogrzewaniem podłogowym i klimakonwektorem

Moduł R znajduje się w 2. szafie rozdzielczej dla ogrzewania podłogowego, w tym celu stosuje się 2 strefy pokojowe (RZ). Dla oBKT stosowany jest czujnik temperatury powrotu.

(\mathbf{i})

Wskazówka:

Przyporządkowanie jednostek pokojowych do stref pokojowych o różnej funkcji nie jest decydujące. Tę samą funkcję można uzyskać również w tej konfiguracji (do RU 2 jest również przyporządkowana RZ3):

(i)

Ważna wskazówka:

Do jednej strefy objętej systemem regulacji (CA) nie można przypisać jednostek pokojowych przyporządkowanych do różnych baz. Strefy objęte systemem regulacji są zawsze ograniczone do jednej bazy i odpowiedniego modułu R.

04.05 Dodatkowa jednostka pokojowa do pomiaru temperatury powrotu / temperatury rdzenia

RU 3 przynależy do CA, ale jest wykorzystywana tylko do pomiaru temperatury powrotu. Pomiar temperatury w pomieszczeniu jest blokowany po zaznaczeniu pola wyboru "Wyklucz temperaturę pokojową".

CONTROL AREA CA

04.06 Zalecana procedura projektowania systemu

Instalacje z kilkoma rozdzielaczami oraz większą liczbą pomieszczeń, w których przewidziano kilka jednostek pokojowych w jednej strefie objętej systemem regulacji, muszą być zaprojektowane ze szczególną starannością i dobrze udokumentowane.

Zaleca się użycie arkusza kalkulacyjnego Excel do sporządzenia wykazu wszystkich użytych jednostek pokojowych i ich relacji do pomieszczeń, rozdzielaczy i systemów.

- Etap 1: Sporządzenie listy referencyjnej rozdzielaczy, systemów i pomieszczeń
- Etap 2: Ustalenie miejsca, w jakim należy zastosować strefę objętą systemem regulacji (CA)

Wskazówka:

Jedna CA jest zawsze ograniczona do jednej bazy NEA SMART 2.0 i modułu R.

- Etap 3: Umieszczenie jednostek pokojowych w pomieszczeniach lub strefach objętych systemem regulacji
- Etap 4: Decyzja, czy dodatkowe jednostki pokojowe będą potrzebne tylko do pomiaru temperatury powrotu lub temperatury rdzenia, tzn. bez pomiaru temperatury w pomieszczeniu.
- Etap 5: Ustalenie liczby stref pokojowych dla każdej pojedynczej jednostki pokojowej. W tym punkcie należy uwzględnić zastosowane systemy (podłogowe, sufitowe, ścienne, klimakonwektory, BKT, oBKT, IFHK) oraz liczbę obiegów grzewczych.
- Etap 6: Określenie wymaganej liczby jednostek bazowych i powiązanych modułów R na podstawie liczby CA i liczby stref pokojowych. Przyporządkowanie jednostek bazowych NEA SMART 2.0 i modułów R do rozdzielaczy i obiegów grzewczych.
- Etap 7: Przyporządkowanie jednostek pokojowych do stref pokojowych (RZ)

05 Instalacja komponentów

Instalacje komponentów wykonuje się zasadniczo w taki sam sposób, jak opisano w instrukcji serwisowej NEA SMART 2.0.

05.01 Jednostki pokojowe w strefach objętych systemem regulacji

Kilka jednostek pokojowych instalowanych w jednym pomieszczeniu w celu utworzenia strefy objętej systemem regulacji (CA) należy rozmieścić równomiernie w całej strefie objętej systemem regulacji, aby zapewnić wiarygodność przekazywanych informacji o stanie termicznym tego pomieszczenia.

Mogą występować różnice temperatur w różnych punktach strefy objętej systemem regulacji. Wpływ ten jest minimalizowany poprzez uśrednianie wartości.

Wskazówka:

Należy stosować się do ogólnych zasad rozmieszczania jednostek pokojowych. W tym zakresie odsyłamy do instrukcji montażu jednostek pokojowych.

05.02 Czujnik temperatury rdzenia

Czujniki temperatury rdzenia montuje się w rurce ochronnej, aby uniknąć bezpośredniego kontaktu z betonem i umożliwić ich wymianę w razie usterki.

Czujnik temperatury musi znajdować się w płaszczyźnie rur grzewczych wewnątrz elementu konstrukcyjnego i w środku pomiędzy 2 rurami na tej płaszczyźnie.

05.03 Czujnik temperatury powrotu

Czujniki temperatury powrotu muszą być zamocowane w sposób zapewniający dobry kontakt termicznym z rurą powrotną. Czujniki należy umieścić w wykonanej izolacji rur lub zamontować dodatkową odpowiednią izolację, aby ograniczyć negatywny wpływ temperatury otoczenia.

Czujniki należy umieścić w odległości co najmniej 10 cm od rozdzielacza, aby ograniczyć przenikanie ciepła między rozdzielaczem a czujnikiem temperatury powrotu.

Uwaga:

W celu uzyskania wiarygodnej informacji o średniej temperaturze powrotu w strefie należy zapewnić regulację obiegów grzewczych w sposób określony w projekcie.

06 Konfiguracja za pomocą kreatora

W niniejszym rozdziale opisano głównie różnice lub dodatkowe czynności wymagane w przypadku TABS. Wszystkie inne ustawienia konfiguracji lub parametrów podano w instrukcji serwisowej NEA SMART 2.0.

06.01 Przykładowa instalacja

Podany przykład obejmuje instalację z zastosowaniem oBKT (przypowierzchniowy system BKT) i systemu ogrzewania podłogowego, w skład której wchodzi:

- 1 pomieszczenie biurowe z oBKT (grzanie i chłodzenie) i ogrzewaniem podłogowym. To pomieszczenie jest wyposażone w jeden osuszacz powietrza i jeden klimakonwektor do chłodzenia
- 1 pomieszczenie bistro z oBKT (grzanie i chłodzenie) i ogrzewaniem podłogowym
- 1 strefa toalet tylko z ogrzewaniem podłogowym

System NEA SMART 2.0 reguluje temperaturę zasi-

lania dla oBKT (rozdzielacz 1); rozdzielacz 2 zasilany jest przez jednostkę zewnętrzną do ogrzewania podłogowego.

Pomieszczenie biurowe ma ok. 150 m². Dla tak dużego pomieszczenia przewidziana jest jedna strefa obejmująca system regulacji z 2 jednostkami pokojowymi.

Wszystkie jednostki pokojowe w pomieszczeniach z oBKT mają podłączony czujnik temperatury rdzenia lub temperatury powrotu.

Dodatkowo w konfiguracji "obiegu z podmieszaniem" zastosowano moduł U służący do regulacji temperatury zasilania oBKT. Drugi moduł U zastosowano w konfiguracji klimakonwektor/osuszacz powietrza.

06.02 Konfiguracja z wykorzystaniem arkusza kalkulacyjnego programu Excel

Zaleca się skorzystanie z arkusza kalkulacyjnego Excel do konfiguracji w sposób prezentowany poniżej.

- Wypełnij kolumny od lewej do prawej
- Zawsze używaj tych samych unikalnych nazw
- W przypadku występowania kilku elementów jednego typu należy w nazwie umieścić cyfrę, aby umożliwić sortowanie (patrz Rozdzielacz)
- Kolumna 1: Numeracja wierszy narastająco
- Kolumna 2: Nazwa rozdzielacza zawiera numer rozdzielacza i zasilany system
- Kolumna 3: System
- Kolumna 4: Numer obiegu grzewczego
- Kolumna 5: Nazwa pomieszczenia
- Kolumna 6: Numeracja pomieszczeń, przydatna w większych instalacjach
- Kolumna 7: Numer strefy objętej systemem regulacji (CA)
- Kolumna 8: Numer jednostki pokojowej (typ jednostki pokojowej jest w tym momencie nieistotny)
- Kolumna 9: Strefa pokojowa (RZ), do której przyporządkowano daną jednostkę pokojową
- Kolumna 10: Baza NEA SMART 2.0 / moduł R (master lub slave)

1	2	3	4	5	6	7	8	9	10
Number in	Manifold	System	Circuit	Room	Room-	СА	Room unit	RZ	Controller
listing 💷	•	-	Ŧ	×	number _.	¥	•	¥	v
1	M1_sCCT	sCCT	1	Office	1	1	1	1	Master
2	M1_sCCT	sCCT	2	Office	1	1	1	1	Master
3	M1_sCCT	sCCT	3	Office	1	1	2	2	Master
4	M1_sCCT	sCCT	4	Office	1	1	2	2	Master
5	M1_sCCT	sCCT	5	Bistro	2	None	3	3	Master
6	M1_sCCT	sCCT	6	Bistro	2	None	3	4	Master
7	M2_UFH	UFH	1	Bistro	2	None	3	9	Master R-Module
8	M2_UFH	UFH	2	Bathroom	3	None	4	10	Master R-Module
9	M2_UFH	UFH	3	Office	1	1	1	11	Master R-Module
10	M2_UFH	UFH	4	Office	1	1	1	11	Master R-Module
11	M2_UFH	UFH	5	Office	1	1	2	12	Master R-Module
12	M2_UFH	UFH	6	Office	1	1	2	12	Master R-Module

Objaśnienia

Rozdzielacze do RFBH i oBKT znajdują się w tym samym pomieszczeniu, ale nie w tym samym miejscu. Dlatego zaleca się zastosowanie modułu master tylko dla rozdzielacza oBKT, a modułu R tylko dla rozdzielacza RFBH (ułatwia to okablowanie siłowników):

Moduł R może obsługiwać 4 jednostki pokojowe, do niego można bezpośrednio podłączyć 8 siłowników.

Obsługa przez moduł R: 1 jednostka pokojowa na RZ 9 (bistro) 1 jednostka pokojowa na RZ 10 (łazienka) 2 jednostki pokojowe na RZ 11 i RZ 12 (biuro)

Do stref pokojowych RZ 1 i RZ 2 układu master można podłączyć 2 siłowniki.

06.03 Rozmieszczenie regulatorów pokojowych

Uwaga:

W chłodzonych pomieszczeniach stosuje się jednostki pokojowe z czujnikiem wilgotności (w tym przypadku biuro i bistro).

06.04 Kreator

06.04.01 Typ systemu

W systemach z TABS zawsze należy wybierać opcję "Zaawansowana instalacja".

Choose system type

Before continuing with the installation, please check the following :

 All electrical connections are done and abacked
•All room units are naired
Outside temperature probes are connected / paired (ontional)
•All DIP switches are set and checked
System bus connections are done and checked
All central controllers and extension modules are powered
are powered

06.04.02 Elementy systemu

Na tej stronie można zdefiniować liczbę stref objętych systemem regulacji (CA):

System components

No. Base un	its (Master+Slave)	1
No. R-Modu	les	1
No. of Room	Units	4
No. Control	Areas (CA)	1
No. U-Modu	les	2
No. Mixed ci	rcuits	1
No of pumps	s (local/global only!)	1
Boiler dema	nd signal	~
Chiller dema	and signal	~
No. Dehumi	difiers	1
No. of fan co	bils	1
No. Outside	sensors	1
Outside tem be online)	perature from server used	(system has to
Heating mod	le: Central control of flow to	emperature
No. Manifold	ls	2
	Confirm	í

(i)

Uwaga! Należy pamiętać:

Wpisuje się liczbę jednostek pokojowych, a nie liczbę pomieszczeń!

06.04.03 Ustawienia TABS

Wybór systemu:

◄

Po wybraniu jednego z systemów TABS należy na następnej stronie ustawić parametry tego systemu:

SCCT

Use design values	
Weight Roomtemp.	1
Weight Coretemp.	1
Heat Curve Starting point Normal mode	21
Core temp. heating absence	18
Core temp. cooling	20
Core Temperature safety distance to dew point (in K)	2
Core temp. minimum	16
Core temp. maximum	40
Flow temp. at -15°C	32
Slope Flow 0.27	
Return temp. at -15°C	28
Slope Ret 0.17	70
Confirm	

W przypadku wybrania opcji "Użyj wartości projektowych" temperaturę zasilania i temperaturę powrotu należy wprowadzić, gdy temperatura zewnętrzna osiąga –15°C.

(i)

Wskazówka:

Zwykle te dwie wartości są częścią założeń projektowych budynku i mogą być wprowadzone w menu ustawień TABS.

Na podstawie tych dwóch wartości system oblicza krzywe grzewcze dla temperatury zasilania i powrotu.

Inną możliwością jest ręczne wprowadzenie wartości nachylenia krzywych grzewczych.

TABS Settings

1
1
21
18
20
2
16
40
0,36
0,26

06.04.04 Skanowanie magistrali systemowej

Confirm

Skanowanie magistrali systemowej wyświetla bazę, moduł R i 2 moduły U.

06.04.05 Definicja modułów U **U-Module Configuration** 4 U-Module Address Function U-Module1 00 Mixed circuit # 1 U-Module2 02 Dehumidification n 1 Option Fancoil Q 06.04.06 Moduł U dla obiegu z podmieszaniem (oBKT) U-Module n 0 Mixed circuit # 1 Input/ output Function Actual values Acti- vation AL1 Mixed supply temp. 22.0 ~ AI 2 Return temperature 23.0 ~ AI 3 External temperature 19.6 AI 4 ~ DI 1 Dew point 1 DI 2 Mixed Circuit demand 0 REL 1 Pump 0 Pump high efficiency ~ Invert control signal Mixed supply temp. offset 0,0 Return temperature offset 0,0

Confirm & test Confirm

OI

Adjust offset

16

Łączone stosowanie modułu U:

- klimakonwektor korzysta z przekaźnika 1
- osuszacz powietrza (tylko sprężarka) przekaźnik 2
- osuszacz powietrza jest zasilany przez rozdzielacz 1

06.04.09	Przyporządkowanie do strefy objętej systemem regulacji (CA)		
•	Device configuration		
Device, functions		Status	
Master R-Module Pump Boiler Chiller	Configure	?	
	REHAU BALANCE actuators		
	Confirm		

Po kliknięciu przycisku "Konfiguruj" otworzy się nowa strona "Przyporządkowanie do CA" pod warunkiem, że na stronie "Komponenty systemu" zdefiniowano strefy

W tej instalacji zdefiniowano 1 CA.

1. jednostka pokojowa "Display TH Bus" jest połączona ze strefą pokojową 1 i 11 – główna strefa pokojowa 1.

2. jednostka pokojowa "Display TH Bus" jest połączona ze strefą pokojową 2 i 12 – główna strefa pokojowa 2.

3. jednostka pokojowa jest połączona ze strefą pokojową 3, 4 i 9 – główna strefa pokojowa 3.

4. czujnik pokojowy (toalety) jest połączony ze strefą pokojową 10.

Jednostki pokojowe połączone z główną strefą pokojową 1 i 2 są zebrane w CA 1.

System oBKT jest zasilany przez rozdzielacz 1 i stosuje się go zarówno do ogrzewania, jak i chłodzenia. System ogrzewania podłogowego jest zasilany przez zasilacz 2 i służy wyłącznie do ogrzewania.

W 3. kolumnie pokazano przyporządkowanie głównych stref pokojowych do CA.

06.04.11 Wejścia/wyjścia cyfrowe

Wejście "Chłodzenie (CO)" przełącza system w tryb chłodzenia.

06.04.12	Kończenie pracy z kreatorem	
4	Device configuration	
Device, functions		Status
Master R-Module Pump Boiler Chiller	Configure	ОК
	Enable automatic mode heat/cool	
	REHAU BALANCE actuators	
	Heat/Cool remote switching	
	Confirm	

Zaznaczenie obu pół wyboru: "Włącz automatyczne przełączanie ogrzewanie/chłodzenie" i "Zdalne sterowanie ogrzewanie/chłodzenie" powoduje, że system można przełączać z trybu ogrzewania na tryb chłodzenia poprzez wejście "Chłodzenie (CO)".

Uwaga! Należy pamiętać:

System musi być ustawiony na tryb automatyczny.

System configuration completed

You may now enter specific data for this installation

OK

Konfiguracja i ustawienia z poziomu instalatora 07 (strony internetowe)

07.01 Konfiguracja jednostek pokojowych

Po zamknięciu kreatora wyświetla się menu główne obszaru instalatora:

Installer main menu

System set up procedure
Room Units
Timer programs
Settings
System
Diagnosis/Calibration
Exit installer menu

Kliknąć przycisk "Urządzania pokojowe":

Room Uni	its
Master - 1	22.1
Master - 2	22.6
Master - 3	21.3
Master - 10	21.5

Jednostki pokojowe mają nadal nazwy bazy (w tym przypadku Master) w powiązaniu z odpowiednią główną strefą pokojowa.

"Master - 1" oznacza 1. jednostkę pokojową w CA 1.

Do "Master - 1" zostanie przyporządkowany osuszacz powietrza oraz klimakonwektor służący do chłodzenia.

Wskazówka:

Powyższe dotyczy tylko 1. jednostki pokojowej w CA 1. 2. jednostka pokojowa w CA 1 wskazuje automatycznie to samo przyporządkowanie.

•	Rooms	
Master - 1	1	22.1
	â	ſ,
<u>>>></u>	21,0	19,0
**	24,0	26,0
	Ē	15,0
Humidity 36 %		

Weekly program

a

Dehumidifier	
U-Module Dehumidifier 1.1 Option Fan	coil
Fan coil	
Fan coil 1	-
Fan coil Supply	
None	▼
Fan coil System	
Cool	•
Fan coil Tolerance	
Comfort	
Fan coil Active in Reduced	
Fan coil Lock	
Enable auto start	~
Pilot room	~
Display lock	
Cooling (CO)	~
Function of additional input	
P10	
Exclude Room Temp	
Remote temperature :	21.7
Version : 1.6	
Confirm	

Zewnętrzny czujnik jest skonfigurowany jako P10 (czujnik temperatury powrotu). Bieżąca wartość pomiarowa zdalnego czujnika (tutaj 20,7°C) wyświetli się dopiero po odświeżeniu tej strony. Jednostka pokojowa jest skonfigurowana dla trybu ogrzewania i chłodzenia.

"Master - 2" oznacza 2. jednostkę pokojową w CA 1. Osuszacz powietrza i klimakonwektor do chłodzenia są prezentowane w taki sposób, jak zostały zdefiniowane dla "Master - 1".

4	Rooms	
Master - 2	2	22.6
<u>₩</u>	21,0 24,0	19,0 26,0 15,0
Humidity : 35 %		
1		-
0		
Dehumidifier		
U-Module Dehi	umidifier 1.1 Optio	on Fancoil 🛛 👻
Fan coil Fan coil 1		-
Fan coil Supply		
None		↓ • •
Fan coil System		
Cool		×
Fan coil Toleran	се	
Comfort	n Dadward	· · · ·
Fan coll Active I	n Reduced	
Fan coil Lock		
Enable auto sta	rt	~
Pilot room		~
Display lock		
Unating		
Heating		~
Cooling (CO)		~
Function of addi	itional input	
P9	F	
Exclude Room	iemp	
Remote temper	rature :	21.7
Version : 1.6		

"Master - 3" oznacza pojedynczą jednostkę pokojową w pomieszczeniu "Bistro".

۹	Rooms	
Master - 3		21.3
)))	A	1 ;
<u></u>	21,0	19,0
*	24,0	26,0
	Ê	15,0
Weekly program		-
Dehumidifier No dehumidifier		•
Fan coil		
None		•
Enable auto start		~
Pilot room		
Display lock		
Heating		~
Cooling (CO)		~
Function of addition	onal input	
P10		
Version : 1.6		_
1	Confirm	

Zewnętrzny czujnik jest skonfigurowany jako czujnik temperatury powrotu (P10).

Pomieszczenie jest skonfigurowane dla trybu ogrzewania i chłodzenia.

Sonda zewnętrzna jest skonfigurowana jako P9 (czujnik temperatury rdzenia). Bieżąca wartość pomiarowa zdalnego czujnika wyświetli się dopiero po odświeżeniu tej strony. Jednostka pokojowa "Master - 10" jest przeznaczona dla pomieszczenia "toalety" wyposażonego w ogrzewanie podłogowe.

٩	Rooms	
Master -	- 10	21.6
<u>~~</u>	21,0	1 9,0
Weekly progr	am	
1		•
0		
Dehumidifier		
No dehumid	lifier	
Fan coil		
None		
Enable auto s	start	~
Pilot room		
Display la als		
Display юск		
Heating		~
Cooling (CO)		
Function of a	dditional input	
P0		
Version : 1.27	7	
1	Confirm	

Nie podłączono zewnętrznego czujnika (PO).

07.02 Punkt menu "Ustawienia" w menu instalatora

Installer main menu

System set up procedure Room Units Timer programs Settings System Diagnosis/Calibration

Exit installer menu

Kliknij przycisk "Ustawienia":

07.02.01 Ustawienia TABS

Jest to ta sama strona, która znajduje się w kreatorze pierwszej instalacji. W tym miejscu można ręcznie zmieniać parametry TABS, jeżeli podczas eksploatacji TABS powoduje nadmiar lub niedomiar zasilania wpływający na temperaturę w pomieszczeniu.

Najbardziej niezawodną i zalecaną metodą jest zmiana wartości projektowych w małych stopniach:

- temperatura zasilania przy –15°C
- temperatura powrotu przy –15 °C
- punkt początkowy krzywej grzewczej w normalnym trybie pracy

Dodatkowo istnieje możliwość zmiany wagi temperatury pomieszczenia i temperatury rdzenia:

- waga temperatury pomieszczenia
- waga temperatury rdzenia

TABS Settings

SCCT

Use design values	~
Weight Roomtemp.	1
Weight Coretemp.	1
Heat Curve Starting point Normal mode	21
Core temp. heating absence	18
Core temp. cooling	20
Core Temperature safety distance to dew p	oint (in 2,0
Core temp. minimum	16
Core temp. maximum	40
Flow temp. at -15°C	32
Slope Flow 0.27	
Return temp. at -15°C	28
Slope Ret 0.17	

Confirm

07.02.02 Obiegi z podmieszaniem

W przypadku systemu korzystającego z jednego obiegu (lub maksymalnie 3 obiegów) z podmieszaniem menu "Ustawienia" zawiera punkt menu "Obiegi z podmieszaniem".

Obieg z podmieszaniem dla systemu TABS przejmuje następujące wartości parametrów z menu ustawień TABS:

1. punkt początkowy krzywej grzewczej w normalnym trybie pracy

2. nachylenie krzywej grzewczej (zasilanie) – tryb normalny

Gemischte Kreise

Gemischter Kreis # 1

TABS System -> Auslegungswerte verwenden	
Startpunkt Heizkurve Normalbetrieb (C)	21
Startpunkt Heizkurve Abwesenheitsbetrieb (C)	17
Steigung Heizkurve Normalbetrieb	0,26
Steigung Heizkurve Abwesenheitsbetrieb	0,22
Absenkung Vorlauftemperatur im reduzierten Betrieb	(K)
	4
Minimalwert Vorlauftemperatur im Normalbetrieb (C)	25
Minimalwert Vorlauftemperatur im Abwesenheitsbetrie	eb (C)
	20
Maximalwert der Vorlauftemperatur (Heizen, Normalb	etrieb)
(C)	40
Maximalwert der Vorlauftemperatur (Heizen,	
Abwesenheitsbetrieb) (C)	35
Filterzeit für Außentemperatur (in h)	48
Boost Modus freigegeben	~
Minimalwert VorlTemperatur Kühlen (Normalbetrieb)	(C)
	16,0
Sicherheitsabstand VorlTemp. Kühlen zu Taupunkt (k	()
	2,0
Rücklauftemperaturgrenze Kühlbetrieb (C)	18,0
Proportionalband Heizkreis (K)	20,0
Proportionalband Kühlkreis (K)	10,0
Integralzeit gemischte Kreise (in sek)	60
Verzögerungszeit Freigabe PI-Regler (sek)	15
Bestätigen	

Parametry

- punkt początkowy krzywej grzewczej w zredukowanym trybie pracy
- nachylenie krzywej grzewczej w zredukowanym trybie pracy

są wyliczane z parametrów 1) i 2).

(i)

Tych wartości nie można zmieniać w menu "Obieg z podmieszaniem".

07.02.03 Parametry sterujące

Parametry sterujące to ustawienia dotyczące regulacji temperatury w pomieszczeniu. Wyświetlane są tylko ustawienia dla systemów skonfigurowanych w konfiguratorze.

Rodzaj parametrów jest taki sam jak dla pozostałych systemów, ale wartości podstawowe i zakresy wartości są dostosowane do TABS.

SCCT

Proportional bandwidth heating mode (in K	()
	4,0
Proportional bandwidth cooling mode (in K)
	4,0
Pulse period time of room temp. control (in	i min)
	60
Minimum pulse length room temp. control	(in min)
	20
Integral time room temperature control (in_	min)
	120
Integral part limitation (in %)	30
Optimization factor for room temp. control	5
Pulse length threshold for continous mode	(%)
	80
Shift of proportional band (%)	0
Confirm	

Ze względu na większą masę termiczną oBKT zaznaczone parametry są dostosowane do wyższych wartości.

07.02.04 Sterowanie obciążeniem BKT

W rozdziale 3.5 opisano strategię obciążania rdzenia systemu BKT. Przedstawione poniżej menu parametryzuje ten proces:

Dla każdej części systemu zasilanego z zastosowaniem BKT wybiera się program tygodniowy na potrzeby zastosowania tej strategii dla trybu ogrzewania lub chłodzenia albo dla obu trybów.

W nieaktywnym przedziale czasowym programu tygodniowego dostępne są następujące opcje:

- Całkowite zablokowanie pracy BKT
- Zmniejszenie wydajności grzewczej lub chłodniczej o wprowadzoną wartość procentową.

08 Obsługa przez użytkownika

08.01 Poziomy użytkownika na stronach internetowych

Poziom użytkownika nie różni się od instalacji innych systemów.

Strefa 1 objęta systemem regulacji jest wyświetlana jako pomieszczenie nazwane w tym przypadku "Master – 1" (nazwa jednostki pokojowej w CA 1).

Master - 1	22.1
Master - 3	21.3
Master - 10	21.5

Rooms

Na naszym przykładzie użytkownik może wprowadzać następujące zmiany w nazwach pomieszczeń:

 Rooms 	
Office	22.2
Bistro	21.3
Bathrooms	21.6

08.02 Jednostki pokojowe

Każda zmiana ustawień w którejkolwiek z jednostek pokojowych należących do jednego obszaru objętego systemem regulacji jest przenoszona na pozostałe jednostki pokojowe w tym obszarze.

08.03 Obsługa za pomocą aplikacji

Obsługa systemu nie różni się od instalacji bez TABS.

4

Parametry istotne dla TABS 09

09.01 Ustawienia TABS

Przedstawione poniżej parametry dotyczą 4-BKT, 5-oBKT, 6-IFHK.

Ścieżka dostępu ustawień w aplikacji: Strona główna → Pozostałe → Ustawienia → Instalator → Parametry sterujące → Ustawienia TABS

Klucz	Opis w menu parametrów	Komentarz	Min.	Maks.	Wartość podsta- wowa	Jednostka
BKT1 oBKT1 IFHC1	Wartości projektowe	Wartość wynosi 1, jeżeli stosowane są wartości projektowe. W tym przypadku temperatury zasi- lania i powrotu są wprowadzane przy temperaturze zewnętrznej -15°C, a system wykorzystuje obli- czone krzywe grzewcze dla temperatury zasilania i powrotu lub temperatury rdzenia.	0	1	4: 1 5: 1 6: 1	-
BKT2 oBKT2 IFHC2	Waga temperatury pomieszczenia	Współczynnik określający wpływ temperatury w pomieszczeniu na algorytm sterowania dla TABS.	1	10	4: 1 5: 1 6: 1	-
BKT3 oBKT3 IFHC3	Waga temperatury rdzenia	Współczynnik określający wpływ temperatury rdzenia na algorytm sterowania dla TABS.	1	10	4: 1 5: 1 6: 1	°C
BKT4 oBKT4 IFHC4	Punkt początkowy krzywej grzewczej w normalnym trybie pracy	Krzywa grzewcza zaczyna się w tym punkcie. Wartość temperatury zasilania jest taka sama jak temperatury zewnętrznej. Dotyczy normalnego trybu pracy (tj. nie dotyczy trybu zredukowanego)	1	30	4: 21 5: 21 6: 21	°C
BKT5 oBKT5 IFHC5	Temperatura rdzenia Tryb chłodzenia	Wartość docelowa temperatury rdzenia w trybie chłodzenia.	15	25	4: 20 5: 20 6: 20	°C
BKT6 oBKT6 IFHC6	Temperatura rdzenia Tryb zredukowany	Wartość docelowa temperatury rdzenia w trybie ogrzewania, gdy system pracuje w trybie zreduko- wanym.	10	25	4: 18 5: 18 6: 18	°C
BKT7 oBKT7 IFHC7	Temperatura rdzenia Minimum	Minimalna wartość temperatury rdzenia	10	25	4: 16 5: 16 6: 16	°C
BKT8 oBKT8 IFHC8	Temperatura rdzenia Maksimum	Maksymalna wartość temperatury rdzenia	20	40	4: 30 5: 30 6: 30	°C
BKT9 oBKT9 IFHC9	Temperatura zasilania przy –15°C	W przypadku stosowania wartości projektowych wartość ta jest wprowadzana dla temperatury zasilania przy –15°C.	10	40	4: 32 5: 32 6: 32	°C
BKT10 oBKT10 IFHC10	Wzrost temperatury zasilania	Wartość ta jest obliczana w przypadku stosowania wartości projektowych. Wartość tę należy wprowa- dzić, jeżeli nie są stosowane wartości projektowe.	0	1	4: 0,36 5: 0,36 6: 0,36	-
BKT11 oBKT11 IFHC11	Temperatura powrotu przy –15°C	W przypadku stosowania wartości projektowych wartość ta jest wprowadzana dla temperatury powrotu przy –15°C.	10	40	4: 28 5: 28 6: 28	°C
BKT12 oBKT12 IFHC12	Wzrost temperatury powrotu	Wartość ta jest obliczana w przypadku stosowania wartości projektowych. Wartość tę należy wpro- wadzić, jeżeli nie są stosowane wartości projek- towe.	0	1	4: 0,26 5: 0,26 6: 0,26	-
BKT15 oBKT15 IFHC15	Margines bezpieczeń- stwa dla rdzenia względem tempera- tury punktu rosy	Chłodzenie elementu zostaje wstrzymane, gdy temperatura rdzenia spadnie poniżej temperatury punktu rosy powiększonej o margines bezpieczeń- stwa.	0	10	4: 2 5: 2 6: 2	K

09.02 Obiegi z podmieszaniem

09.02.01 Obiegi grzewcze

Parametry te są stosowane jako wartości domyślne, jeśli podczas konfiguracji systemu zdefiniowano obieg z podmieszaniem.

Podczas uruchamiania dla każdego obiegu z podmieszaniem tworzony jest zestaw parametrów zgodnie z zastosowaniem obiegu (podłoga/ściana, sufit, BKT, oBKT, IFHK).

Przedstawione poniżej parametry dotyczą 4-BKT, 5-oBKT, 6-IFHK.

Parametry na szarym tle są tylko wyświetlane i nie mogą być zmieniane w tym menu.

Ścieżka dostępu ustawień w aplikacji:

Strona główna \rightarrow Pozostałe \rightarrow Ustawienia \rightarrow Instalator \rightarrow Parametry sterujące \rightarrow Ogrzewanie \rightarrow Obiegi grzewcze

Klucz	Opis w menu parametrów	Komentarz	Min.	Maks.	Wartość podstawowa	Jednostka
MIXHO1	Punkt początkowy krzywej grzewczej Tryb normalny	Krzywa grzewcza zaczyna się w tym punkcie, wartość temperatury zasilania jest taka sama jak temperatury zewnętrznej. Dotyczy trybu normalnego (tj. nie dotyczy trybu zredukowanego)	10	40	4: 21 5: 21 6: 21	°C
MIXHO2	Punkt początkowy krzywej grzewczej Tryb zredukowany	Jak MIXH01, ale dotyczy trybu zredukowanego.	10	40	4: 16 5: 16 6: 16	°C
MIXH03	Nachylenie krzywej grzewczej Tryb normalny	Określa nachylenie krzywej grzewczej (stopień nachylenia) Dotyczy trybu normalnego (tj. nie dotyczy trybu zredukowanego).	0	1	4: 0,28 5: 0,28 6: 0,28	-
MIXHO4	Nachylenie krzywej grzewczej Tryb zredukowany	Jak MIXH03, ale dotyczy trybu zredukowanego.	0	1	4: 0,16 5: 0,16 6: 0,16	-
MIXHO5	Minimalna wartość temperatury zasilania – ogrzewanie (tryb normalny)	Minimalna wartość temperatury zasilania w momencie załączenia trybu ogrzewania, nieza- leżnie od funkcji krzywej grzewczej Dotyczy trybu normalnego (tj. nie dotyczy trybu zredukowanego).	15	40	4: 22 5: 22 6: 22	°C
MIXHO6	Minimalna wartość temperatury zasilania – ogrzewanie (tryb zredu- kowany)	Jak MIXHO5, ale dotyczy trybu zredukowanego	15	40	4:20 5:20 6:20	°C
MIXHO7	Maksymalna wartość temperatury zasilania – ogrzewanie (tryb normalny)	Ograniczenie temperatury zasilania przy bardzo niskich temperaturach zewnętrznych, niezależnie od funkcji krzywej grzewczej. Dotyczy trybu normalnego (tj. nie dotyczy trybu zredukowanego).	20	40	4: 35 5: 35 6: 35	°C
MIXH08	Minimalna wartość temperatury zasilania – ogrzewanie (tryb zredu- kowany)	Jak MIXH07, ale dotyczy trybu zredukowanego.	20	40	4: 35 5: 35 6: 35	°C
MIXH09	Czas filtrowania tempe- ratury zewnętrznej	Do rozpoczęcia i zakończenia trybu ogrzewania oraz do obliczenia temperatury zasilania nie służy aktualna temperatura zewnętrzna, lecz uśredniona wartość temperatury w tym okresie.	0	99	4: 48 5: 48 6: 48	h
MIXH11	Obniżenie temperatury zasilania w trybie zredu- kowanym	W trybie zredukowanym (energooszczędnym) następuje obniżenie temperatury zasilania o tę wartość.	0	10	4: 4 5: 4 6: 4	К
MIXH12	Temperatur pokojowa – współczynnik kompen- sacji	Wpływ różnicy między wartością zadaną a warto- ścią rzeczywistą temperatury pokojowej na temperature zasilania.	0	5	4: 0 5: 0 6: 0	-

26

09.02.02 Obiegi chłodzące

Parametry te są stosowane jako wartości domyślne, jeśli podczas konfiguracji systemu zdefiniowano obieg z podmieszaniem.

Podczas uruchamiania dla każdego obiegu chłodzącego tworzony jest zestaw parametrów zgodnie z zastosowaniem obiegu (podłoga/ściana, sufit, BKT, oBKT, IFHK).

Przedstawione poniżej parametry dotyczą 4-BKT, 5-oBKT, 6-IFHK.

Ścieżka dostępu ustawień w aplikacji: Strona główna \rightarrow Pozostałe \rightarrow Ustawienia \rightarrow Instalator \rightarrow Parametry sterujące \rightarrow Chłodzenie \rightarrow Obiegi chłodzące

Klucz	Opis w menu parametrów	Komentarz	Min.	Maks.	Wartość podstawowa	Jednostka
CAn	Wartość minimalna temperatury zasilania dl trybu chłodzenia (tryb normalny)	Najniższa dopuszczalna temperatura zasilania w atrybie normalnym (nie dotyczy trybu zredukowa- nego)	8	25	4: 16 5: 16 6: 16	°C
CBn	Margines bezpieczeń- stwa dla temperatury punktu rosy	Temperatura zasilania musi być zawsze wyższa o tę wartość od najbardziej niekorzystnej (najwyż- szej) wartości temperatury punktu rosy.	1	10	4: 2 5: 2 6: 2	°C
CCn	Minimalna temperatura chłodzonej powierzchni dla obwodu z podmie- szaniem	W trybie chłodzenia temperatura chłodzonych powierzchni nie może spaść poniżej tej wartości.	15	25	4: 20 5: 20 6: 20	°C
CDn	Minimalna temperatura powrotu w trybie chło- dzenia dla obwodu z podmieszaniem	Temperatura na powrocie nie może spaść poniżej tej wartości w trybie chłodzenia.	15	25	4: 18 5: 18 6: 18	°C
CEn	Podwyższenie tempe- ratury zasilania w trybie zredukowanym	W trybie zredukowanym (energooszczędnym) następuje podwyższenie temperatury zasilania o tę wartość.	0	10	4: 1 5: 1 6: 1	К

09.03 Ustawienia parametrów sterujących

Ta parametry określają charakterystykę regulacji temperatury w pomieszczeniach dla TABS

Przedstawione poniżej parametry dotyczą 4-BKT, 5-oBKT, 6-IFHK.

Ścieżka dostępu ustawień w aplikacji:

Strona główna \rightarrow Więcej \rightarrow Ustawienia \rightarrow Instalator \rightarrow Parametry sterujące \rightarrow Regulacja temperatury w pomieszczeniu

Klucz	Opis w menu parametrów	Komentarz	Min.	Maks.	Wartość podstawowa	Jednostka
RO1	Pasmo proporcjonalne w trybie ogrzewania	Pasmo proporcjonalne regulacji temperatury poko- jowej w trybie ogrzewania Pasmo proporcjonalne wpływa na natychmiastową reakcję na zmiany temperatury Im większe pasmo, tym słabsza reakcja.	0	10	4: 4 5: 4 6: 4	К
RO2	Pasmo proporcjonalne w trybie chłodzenia	Jak RO1, dodatkowo dla trybu chłodzenia.	0	10	4: 4 5: 4 6: 4	K
RO3	Czas trwania impulsu regulacji temperatury pokojowej	Czas trwania sygnału modulacji szerokości impulsu stosowanego do regulacji	30	360	4: 80 5: 60 6: 80	min
RO4	Minimalna długość impulsu regulacji temperatury pokojowej	Sygnały impulsu poniżej tej wartości granicznej są pomijane.	20	60	4: 25 5: 20 6: 25	min
RO5	Czas całkowania dla regulacji temperatury pokojowej	Czas całkowania regulatora w minutach w trybie ogrzewania i chłodzenia. Wpływa na reakcję na utrzymujące się odchylenie od wartości zadanej. Im dłuższy czas, tym wolniejsza reakcja. O oznacza WYŁ.	0	600	4: 180 5: 120 6: 180	min
RO6	Ograniczenie członu całkującego	Ograniczenie członu całkującego sygnału regula- tora w %.	0	100	4: 30 5: 30 6: 30	%
R07	Optymalizacja regulacji temperatury w pomieszczeniu	Siła oddziaływania funkcji optymalizującej regu- lację temperatury w pomieszczeniu.	0	10	4: 5 5: 5 6: 5	-
RO8	Wartość graniczna długości impulsu tryb pracy ciągłej	Sygnały impulsu powyżej tej wartości granicznej prowadzą do stałego zasterowania siłowników (sygnał ciągły).	50	100	4: 80 5: 80 6: 80	%
RO9	Przesunięcie pasma proporcjonalnego	Definiuje wycentrowane położenie pasma propor- cjonalnego. O % oznacza symetryczne położenie pasa propor- cjonalnego względem wartości zadanej. Przy dobrze ustawionej temperaturze zasilania i dobrze izolowanych budynkach wartość tę można obniżyć do –25 %.	-50	50	4: 0 5: 0 6: 0	%

10 Wskazówki dotyczące optymalizacji

nr	Problem	Potencjalna przyczyna	Pomiary
1	Wahania tempera- tury w pomiesz- czeniu	Temperatura rdzenia jest chwilowo zbyt wysoka (nieprawidłowo dobrane ustawienia)	Jeżeli nie wybrano opcji "Użyj wartości projektowych", należy dostosować usta- wienia krzywej grzewczej i / lub krzywej temperatury powrotu w ustawieniach TABS (zmniejszyć nachylenie). Jeśli wybrano opcję "Użyj wartości projekto- wych", należy sprawdzić i zredukować ustawienie temperatury zasilania i powrotu przy –15°C.
2	-	Temperatura rdzenia jest chwilowo zbyt wysoka (nieprawidłowy pomiar temperatury powrotu)	Należy sprawdzić położenie czujników temperatury powrotu i ich kontakt termiczny.
3	Temperatura w pomieszczeniu jest	Temperatura rdzenia jest za wysoka lub za niska (nieprawidłowo dobrane ustawienia)	Sprawdzić ustawienia w TABS (patrz pkt 1 i 2).
4	za wysoka albo za niska	Temperatura rdzenia jest za wysoka albo za niska (nieprawidłowe informacje o temperaturze zewnętrznej)	Sprawdzić czujnik temperatury zewnętrznej lub miejsce instalacji podane w aplikacji. (Informacje o pogodzie mogą być błędne).
5	_	Niewłaściwa równowaga między TABS a dodat- kowym systemem, takim jak ogrzewanie podło- gowe	Sprawdzić ustawienia TABS (patrz pkt 1 i 2) oraz ustawienia innych systemów.
6			
7			

Niniejszy dokument jest chroniony przez prawo autorskie. Powstałe w ten sposób prawa, w szczególności prawo do tłumaczenia, przedruku, pobierania rysunków, przesyłania drogą radiową, powielania na drodze fotomechanicznej lub podobnej, a także zapisywania danych w formie elektronicznej są zastrzeżone.

Nasze doradztwo w zakresie zastosowania - zarówno w formie ustnej, jak i pisemnej - oparte jest na wieloletnim doświadczeniu i wypracowanych standardach i udzielane jest zgodnie z najlepszą wiedzą. Zakres zastosowania produktów REHAU jest ostatecznie i wyczerpująco opisany w informacji technicznej o danym produkcie. Obowiązująca aktualna wersja dostępna jest w internecie na stroniewww.rehau.com/TI. Zastosowanie, przeznaczenie i przetwarzanie naszych produktów wykracza poza nasze możliwości kontroli i tym samym pozostaje wyłącznie w zakresie odpowiedzialności danego odbiorcy/ użytkownika/przetwórcy. Jeżeli jednak dojdzie do odpowiedzialności cywilnej, to podlega ona wyłącznie naszym warunkom dostawy i płatności, które są dostępne na stronie www.rehau.com/conditions, o ile nie było innych ustaleń pisemnych z REHAU. Dotyczy to również ewentualnych roszczeń z tytułu rękojmi, przy czym rękojmia odnosi się do niezmiennej jakości naszych produktów zgodnie z naszą specyfikacją. Zastrzegamy sobie prawo do zmian technicznych.

© REHAU Sp. z o.o. ul. Poznańska 1a 62-081 Przeźmierowo

www.rehau.pl

954663 PL 06.2022

Biuro Handlowo-Techniczne REHAU Baranowo, ul. Poznańska 1 A, 62-081 Przeźmierowo k. Poznania - tel. 0-61 84 98 400 - fax 0-61 84 98 401 - poznan@rehau.com REHAU Sp. z o.o. - NIP 781-00-16-806 - Sąd Rejonowy Poznań - Nowe Miasto i Wilda w Poznaniu VIII Wydział Gospodarczy Krajowego Rejestru Sądowego; nr KRS 0000049439 Kapitał zakładowy: 46 500 000,00 zł