TECHNISCHE INFORMATION
FLÄCHENHEIZUNG/-KÜHLUNG
BETONKERNTEMPERIERUNG
Diese Technische Information
Flächenheizung/-kühlung Betonkerntemperierung
ist gültig ab April 2012

Mit ihrem Erscheinen verliert die bisherige Technische
Information 864621 (Stand Februar 2011) ihre Gültigkeit.

Unsere aktuellen Technischen Unterlagen finden Sie unter
www.rehau.de zum downloaden.

Die Unterlage ist urheberrechtlich geschützt. Die dadurch
begründeten Rechte, insbesondere die der Übersetzung,
des Nachdruckes, der Entnahme von Abbildungen, der
Funksendungen, der Wiedergabe auf fotomechanischem
oder ähnlichen Wege und der Speicherung in Datenver-
arbeitungsanlagen, bleiben vorbehalten.

Alle Maße und Gewichte sind Richtwerte. Irrtümer und
Änderungen vorbehalten.

Aufgrund einer Systemumstellung auf SAP werden sich
2012 unsere Artikelnummern auf Materialnummern
ändern.

Die bisherige Artikelnummer wird zur Materialnummer
und um 2 Stellen erweitert:
alt: 123456-789 (Artikelnummer)
neu: 11234561789 (Materialnummer)
Um dies in der Technischen Information abzubilden,
haben wir die erweiterten Stellen optisch gekennzeichnet:
1 = 1, z. B.: 1234561789

Wir bitten um Verständnis, dass systemtechnisch alle
Angebote, Auftragsbestätigungen, Versandscheine und
Rechnungen nach der Umstellung weitgehend nur mit der
11-stelligen Nummer versandt werden.
Informationen und Sicherheitshinweise

1.1. Allgemeines

- [5] Grundlagen zur Druckprüfung
- [20] Dichtheitsprüfungen von Flächenheizungs-/kühlungssystemen mit Wasser
- [20] Vorbereitung der Druckprüfung mit Wasser
- [20] Abschluss der Druckprüfung mit Wasser
- [20] Dichtheitsprüfungen von Flächenheizungs-/kühlungssystemen mit ölfreier Druckluft/Inertgas
- [20] Vorbereitung der Druckprüfung mit ölfreier Druckluft/Inertgas
- [21] Dichtheitsprüfung
- [21] Belastungsprüfung
- [21] Abschluss der Druckprüfung mit ölfreier Druckluft/Inertgas
- [21] Spülen der Flächenheizungs-/kühlungsinstallation
- [21] Druckprüfungsprotokoll: REHAU Flächenheizung/-kühlung

2.1. REHAU Betonkerntemperierung

- [5] Einleitung
- [5] Allgemeines
- [6] Sichtbeton
- [7] Systemvarianten
- [7] REHAU oBKT – oberflächennahe Betonkerntemperierung
- [7] BKT Module
- [7] BKT vor Ort
- [8] BKT und oBKT in Fertig- und Halbfertigteilen
- [9] Planung
- [9] Grundlagen der Planung
- [9] Bauliche Voraussetzungen
- [10] Bauliche Voraussetzungen oBKT
- [10] Gebäudetechnik
- [10] Module: aktive Fläche – Anbindeleitung
- [12] Verlegeart Doppelmäander / Einfachmäander
- [12] Hydraulische Anschlussvarianten
- [13] Heiz-/Kühlleistungen
- [14] Montage
- [14] Allgemeine Montagehinweise für BKT und oBKT
- [15] Systemkomponenten

3.1. Prüfprotokolle

- [19] Grundlagen zur Druckprüfung
- [20] Dichtheitsprüfungen von Flächenheizungs-/kühlungssystemen mit Wasser
- [20] Vorbereitung der Druckprüfung mit Wasser
- [20] Abschluss der Druckprüfung mit Wasser
- [20] Dichtheitsprüfungen von Flächenheizungs-/kühlungssystemen mit ölfreier Druckluft/Inertgas
- [20] Vorbereitung der Druckprüfung mit ölfreier Druckluft/Inertgas
- [21] Dichtheitsprüfung
- [21] Belastungsprüfung
- [21] Abschluss der Druckprüfung mit ölfreier Druckluft/Inertgas
- [21] Spülen der Flächenheizungs-/kühlungsinstallation
- [21] Druckprüfungsprotokoll: REHAU Flächenheizung/-kühlung

4. Normen, Vorschriften und Richtlinien

- [27] Normen, Vorschriften und Richtlinien
Hinweise zu dieser Technischen Information

Gültigkeit
Diese Technische Information ist für Deutschland gültig.

Mitgeltende Technische Informationen
- Flächenheizung/-kühlung Wohnbau
- Flächenheizung/-kühlung Nichtwohnbau
- Systemgrundlagen, Rohr und Verbindung

Navigation
Am Anfang dieser Technischen Information finden Sie ein detailliertes Inhaltsverzeichnis mit den hierarchischen Überschriften und den entsprechenden Seitenzahlen.

Piktogramme und Logos

Sicherheitshinweis

Rechtlicher Hinweis

Wichtige Information, die berücksichtigt werden muss

Information im Internet

Ihre Vorteile

Aktualität der Technischen Information
Bitte prüfen Sie zu Ihrer Sicherheit und für die korrekte Anwendung unserer Produkte in regelmäßigen Abständen, ob die Ihnen vorliegende Technische Information bereits in einer neuen Version verfügbar ist.

Das Ausgabedatum Ihrer Technischen Information ist immer links unten auf der Umschlagseite aufgedruckt.

Die aktuelle Technische Information erhalten Sie bei Ihrem REHAU Verkaufsbüro, Fachgroßhändler sowie im Internet als Download unter www.rehau.de oder www.rehau.de/downloads

Sicherheitshinweise und Bedienungsanleitungen
- Lesen Sie die Sicherheitshinweise und die Bedienungsanleitungen zu Ihrer eigenen Sicherheit und zur Sicherheit anderer Personen vor Montagebeginn aufmerksam und vollständig durch.
- Bewahren Sie die Bedienungsanleitungen auf und halten Sie sie zur Verfügung.
- Falls Sie die Sicherheitshinweise oder die einzelnen Montagevorschriften nicht verstanden haben oder diese für Sie unklar sind, wenden Sie sich an Ihr REHAU Verkaufsbüro.
- Nichtbeachten der Sicherheitshinweise kann zu Sach- oder Personenschäden führen.

Bestimmungsgemäßer Gebrauch
Die REHAU Systeme dürfen nur wie in dieser Technischen Information beschrieben geplant, installiert und betrieben werden. Jeder andere Gebrauch ist nicht bestimmungsgemäß und deshalb unzulässig.

Beachten Sie alle geltenden nationalen und internationalen Verlege-, Installations-, Unfallverhütungs- und Sicherheitsvorschriften bei der Installation von Rohrleitungsanlagen sowie die Hinweise dieser Technischen Information. Einsatzgebiete, die in dieser Technischen Information nicht erfasst werden (Sonderanwendungen), erfordern die Rücksprache mit unserer anwendungs-technischen Abteilung. Wenden Sie sich an Ihr REHAU Verkaufsbüro.

Personelle Voraussetzungen
- Lassen Sie die Montage unserer Systeme nur von autorisierten und geschulten Personen durchführen.
- Lassen Sie Arbeiten an elektrischen Anlagen oder Leitungsteilen nur von hierfür ausgebildeten und autorisierten Personen durchführen.

Allgemeine Vorsichtsmaßnahmen
- Halten Sie Ihren Arbeitsplatz sauber und frei von behindernden Gegenständen.
- Sorgen Sie für ausreichende Beleuchtung Ihres Arbeitsplatzes.
- Verwenden Sie nur die für das jeweilige REHAU Rohrsystem vorgesehenen Komponenten. Die Verwendung systemfremder Komponenten oder der Einsatz von Werkzeugen, die nicht aus dem jeweiligen REHAU Installationsystem von REHAU stammen, kann zu Unfällen oder anderen Gefährdungen führen.
- Vermeiden Sie im Arbeitsumfeld den Umgang mit offenem Feuer.

Arbeitskleidung
- Tragen Sie eine Schutzbrille, geeignete Arbeitskleidung, Sicherheitsschuhe, Schutzhelm und bei langen Haaren ein Haarnetz.
- Tragen Sie keine weite Kleidung oder Schmuck, diese könnten von beweglichen Teilen erfasst werden.
- Tragen Sie bei Montagearbeiten in Kopfhöhe oder über dem Kopf einen Schutzhelm.

Bei der Montage
- Lesen und beachten Sie immer die jeweiligen Bedienungsanleitungen des verwendeten REHAU Montagewerkzeugs.
- Die REHAU Rohrscheren haben eine scharfe Klinge. Lagern und handhaben Sie diese so, dass keine Verletzungsgefahr von den REHAU Rohrscheren ausgeht.
- Beachten Sie beim Ablängen der Rohre den Sicherheitsabstand zwischen Haltehand und Schneidewerkzeug.
- Greifen Sie während des Schneidvorgangs nie in die Schneidzone der Werkzeuge oder auf bewegliche Teile.
- Greifen Sie während des Verpressvorgangs nie in die Verpresszone des Werkzeugs oder auf bewegliche Teile.
- Bis zum Abschluss des Verpressvorgangs kann das Formteil aus dem Rohr fallen. Verletzungsgefahr!
- Ziehen Sie bei Pflege- oder Umrüstarbeiten und bei Veränderung des Montageplatzes grundsätzlich den Netzstecker des Werkzeugs und sichern Sie es gegen unbeabsichtigtes Anschalten.
2.1 Einleitung

2.1.1 Allgemeines

Die Anforderungen an moderne Gebäude liegen in hohem thermischen Komfort für den Nutzer, energiesparenden und umweltschonenden Betrieb, sowie niedrigen Investitions- und Betriebskosten für den Betreiber. Einen großen Teil zum Erreichen dieser Anforderungen kann die Betonkerntemperierung (BKT) leisten.

Die Betonkerntemperierung nutzt das Prinzip, die thermische Speichermasse von Bauteilen zum gleichmäßigen Kühlen bzw. Heizen zu verwenden. Im Kühlfall wird die durch das Bauteil aufgenommene Wärmeenergie über die integrierten Rohrleitungen abgeführt. Im Heizfall erwärmen die Rohrleitungen das Bauteil, welches die Wärme über die Oberfläche wieder in den Raum abgeben kann.

Durch den Einsatz von BKT-Systemen ist ein effizientes Heizen und Kühlen möglich. Das niedrige Temperaturniveau, nahe der Raumtemperatur und die geringen Schwankungen der Vorlauftemperaturen tragen zum ökonomischen Betrieb und zur CO₂-Einsparungen bei.

Einsparpotential bietet der Einsatz von BKT-Systemen durch die Abdeckung der Grundlast über das gleichmäßige Temperaturniveau im Vorlauf, die kleinere Dimensionierung von Lüftungsanlagen, die schnelle Montage bereits im Rohbau und die Nutzung regenerativer Energiequellen.

- Niedrige Betriebskosten
- Geringe Investitionskosten
- Einsatz regenerativer Energien möglich
- Für Green Building Standards geeignet, z.B. LEED
- Gleichmäßiges niedriges, energetisch günstiges Vorlauftemperaturniveau
- Geringe Oberflächentemperaturen
- Hoher Komfort im Raumklima
- Keine Zuglüterscheinungen
- Kein Sick-Building-Syndrom

Die Weiterentwicklung der BKT zur reaktionsschnellen oberflächennahen BKT (oBKT) ermöglicht eine höhere und schnellere Anpassung der Leistung. Unter Berücksichtigung von Montagestreifen für Trockenaufbauwände sind flexible Bürokonzepte möglich.

2.1.2 Feuerwiderstandsfähigkeit – REI 90 nach DIN EN 13501, F 90 nach DIN 4102-2

2.1.3 Feuerwiderstandsfähigkeit – REI 120 nach DIN EN 13501, F 120 nach DIN 4102-2

Die Anforderung an die Feuerwiderstandsdauer tragender und aussteifender Bauteile ändert sich ab der OKF des letzten Geschoss über 60 m. Über 60 m OKF des letzten Geschoss ist über die Muster-Hochhaus-Richtlinie MHHR die Anforderung REI 120 nach DIN EN 13501 bzw. F 120 nach DIN 4102-2 notwendig.

Unabhängig von der Gebäudehöhe kann aufgrund eines für das jeweilige Bauvorhaben erstellten Brandschutzkonzeptes eine Feuerwiderstandsdauer von REI 120 nach DIN EN 13501 bzw. F 120 nach DIN 4102-2 gefordert werden.

2.1.4 Sonderbauten: Hochhausbau, Bürogebäude, Verwaltungsgebäude, Flughäfen

2.1.5 Sichtbeton

2.2 Systemvarianten

2.2.1 REHAU oBKT – überflächennahe Betonkerntemperierung

Der bestimmungsgemäße Verwendungszweck der REHAU oBKT ist die Montage der vorkonfektionierten Module unter der unteren Bewehrungs Lage innerhalb von massiven Stahlbetondecken mit einer Dicke ≥ 200 mm.

Systemeigenschaften
- Vorgefertigte oBKT-Module
- Doppelmäander
- Verlegeabstand VA 7,5 oder VA 15
- Integrierte Abstandhalter zur Verlegung unter der unteren Bewehrungs Lage
- Integrierte Abstandhalter für untere Bewehrungslage
- Feuerwiderstandsklasse REI 120 nach DIN EN 13501
- Feuerwiderstandsklasse F 120 nach DIN 4102-2
- Abstandshalter wahlweise aus Gießbeton oder Kunststoff

- F 120 durch allgemeines bauaufsichtliches Prüfzeugnis bestätigt
- Sichtbetonqualität mit Abstandhaltern aus Gießbeton
- Module mit integrierten Abstandhaltern für die untere Bewehrung
- Modul mit geringer Bauhöhe
- Variable, objektbezogene Module
- Reaktionsschnelles BKT-System
- Doppelmäander für gleichmäßige Oberflächentemperatur
- Schnelle Montage
- Hohe Kühlleistungen bis ca. 90 W/m² möglich

Systemkomponenten
- oBKT-Module
- RAUTHERM S Rohr
- Schiebehülse
- Kupplung
- Druckluftkupplung
- Blindstopfen
- BKT-Schalungskasten
- Schutzrohr
- Schutzbänd
- BKT Anschlussdose

Rohrdimension
- RAUTHERM S 14 x 1,5 mm

2.2.2 BKT Module

Der bestimmungsgemäße Verwendungszweck der REHAU BKT-Module ist die Montage der vorkonfektionierten Module zwischen der unteren und oberen Bewehrungslage von massiven Stahlbetondecken.

Systemeigenschaften
- Vorgefertigte Module
- Doppelmäander / Einfachmäander
- Verlegeabstand VA 15

- Schnelle Montage
- Variable, objektbezogene Module
- Doppelmäander für gleichmäßige Oberflächentemperatur
- Kühlleistungen bis ca. 70 W/m² möglich

Systemkomponenten
- BKT-Module
- RAUTHERM S Rohr
- Schiebehülse
- Kupplung
- Druckluftkupplung
- Blindstopfen
- BKT-Schalungskasten
- Schutzrohr
- Schutzband
- BKT Anschlussdose

Rohrdimension
- RAUTHERM S 17 x 2,0 mm
- RAUTHERM S 20 x 2,0 mm
Der bestimmungsgemäße Verwendungszweck der BKT vor Ort ist die Montage der RAUTHERM S Rohre auf bauseitigen Trägermatten zwischen der unteren und oberen Bewehrungslage von massiven Stahlbetondecken.

Systemeigenschaften
- RAUTHERM S - Rohr
- Einfachmäander / Doppelmäander
- Verlegeabstand VA 15
- Flexible Anpassung an Objektgeometrie
- Variable BKT-Kreislängen
- Doppelmäander für gleichmäßige Oberflächentemperatur
- Kühlleistungen bis ca. 70 W/m² möglich

Systemkomponenten
- RAUTHERM S Rohr
- BKT-Mattenbinder /-Kabelbinder
- Schiebehülse
- Kupplung
- Druckluftkupplung
- Blindstopfen
- BKT-Schalungskasten
- Schutzrohr
- Schutzband
- BKT Anschlussdose

Rohrdimension
- RAUTHERM S 17 x 2,0 mm
- RAUTHERM S 20 x 2,0 mm

Der bestimmungsgemäße Verwendungszweck der BKT und oBKT in Fertig- und Halbfertigteilen ist die werkseitige Integration der vorkonfektionierten Module für massive Stahlbetondecken.

Systemeigenschaften
- BKT-Module und oBKT-Module im Betonfertigteil /-halbfertigteil integriert
- Einfachmäander / Doppelmäander
- Verlegeabstand VA 15 bzw. VA 7,5 bei oBKT
- Schnelle Montage durch werkseitige Vorfertigung
- Geringer Schalungsaufwand
- Hohe Oberflächenqualität eines Betonfertigteils
- Variable objekbezogene Modulgröße
- Doppelmäander für gleichmäßige Oberflächentemperatur
- Kühlleistungen bis ca. 90 W/m² möglich

Systemkomponenten
- RAUTHERM S Rohr
- BKT-Mattenbinder /-Kabelbinder
- Schiebehülse
- Kupplung
- Druckluftkupplung
- Blindstopfen
- BKT-Schalungskasten
- Schutzrohr
- Schutzband
- BKT Anschlussdose

Rohrdimension
- RAUTHERM S 14 x 1,5 mm
- RAUTHERM S 17 x 2,0 mm
- RAUTHERM S 20 x 2,0 mm
2.3 Planung

2.3.1 Grundlagen der Planung

Allgemein sind für die thermische Aktivierung von Betonbauteilen bei der Planung tabuläre Tabuzonen, die nicht aktiviert werden dürfen, zu berücksichtigen. Tabuzonen für die Verlegung von BKT und oBKT werden z. B. durch den Statiker auf Grund der Bewehrungsdichte im Stützenbereich festgelegt. Bei oberflächennaher BKT sind für die Montage von Trockenbauwänden Montagestreifen zu berücksichtigen.

Ändern sich im Laufe der Nutzung die Anforderungen an die BKT, können durch den Einbau von BKT-Anschlussdosen in der Bauphase zusätzliche Komponenten nachträglich integriert werden. Über die BKT-Anschlussdose können z. B. Deckensegel mit REHAU Kühldecken angeschlossen und somit zusätzliche Kühl-/Heizleistung zur Verfügung gestellt werden.

Bei Einsatz von oberflächennaher Betonkerntemperierung sind auf Grund der Montage unter der unteren Bewehrungslage für flexible Bürokonzepte Montagebereiche für Raumteiler und Trockenbauwände zu berücksichtigen.

Ein wirkungsvoller Einsatz der Betonkerntemperierung wird durch folgende bauliche Randbedingungen begünstigt:
- Gleichmäßiges Lastprofil im Heiz- und Kühlfall
- Wärmedurchgangskoeffizient Fenster $U_{fenster}$: 1,0 bis 1,3 W/m²K
- Durchlassfaktor Sonnenschutz $b_{Sonnenschutz}$: 0,15 bis 0,20
- Norm-Heizlast Φ_{HL} DIN EN 12831: ca. 40 bis 50 W/m²
- Kühllast Q_{K} VDI 2078: bis ca. 60 W/m²
- Keine abgehängten, geschlossenen Decken in aktivierten Zonen
- Flexible Raumtemperaturen an extrem heißen Tagen werden zugelassen
 - bei Anlagenvarianten mit unterstützender Klimalösung bis auf ca. +27 °C
 - bei Anlagenvarianten mit Fensterlüftung bis auf ca. +29 °C
- Homogene Nutzerstruktur / einheitliche Nutzungsweise

2.3.1.1 Bauliche Voraussetzungen

- Fenster
- Sonnenschutz
- Transmissionswärmeeschutz

Durch den hohen Verglasungsanteil von Bürogebäuden wird mit Wärmedurchgangskoeffizienten von Fensterflächen zwischen 1,0 – 1,3 W/m²K ein erheblicher Beitrag zur Reduzierung des Transmissionswärmebedarfs und damit zur Glättung des Lastverlaufes geleistet.

Durch außen liegende Sonnenschutzmaßnahmen mit einem mittleren Durchlassfaktor b von 0,15 bis 0,20 kann der sommerliche Störeinfluss der Sonneneinstrahlung auf den Raum bis zu 85 % reduziert werden. Außen liegende Metalljalousien mit einem Öffnungswinkel von 45° verfügbar über einen b-Faktor von 0,15. Mit innen liegenden Sonnenschutzmaßnahmen, z. B. Stoffmarkisen, kann dieser Abschirmeffekt nicht erzielt werden.

Durch die Verbesserung des Transmissionswärmeeschutzes von Außenbauteilen sollte ein Wärmebedarf von Büro- und Verwaltungsgebäuden zwischen ca. 40 W/m² und 50 W/m² realisiert werden. Je nach Deckenaufbau und Einsatz von BKT oder oBKT kann ein Deckungsbeitrag am Wärmebedarf von bis zu 75 % erzielt werden.

Bürogebäude üblicher Nutzung verfügen über Kühllasten von ca. 60 W/m². Je nach Deckenaufbau können bei Einsatz von BKT bis zu 80 % der Kühllasten abgedeckt werden. Bei Einsatz von oBKT können Kühllasten über 60 W/m² abgedeckt und Spitzenlasten kompensiert werden.

Beste Speichereffekte der Betonkerntemperierung lassen sich mit Rohdeckenstärken von 25 cm bis 30 cm erzielen.

In Bereichen aktivierter Rohdecken ist die Installation von abgehängten, geschlossenen Decken nicht zulässig. Die Montage von offenen, abgehängten Rasterdecken muss im Einzelfall fundiert geprüft werden.

Akustische Maßnahmen in Großraumbüros sind zu empfehlen. Schallabsorbierende, abgehängte Decken sind in aktivierten Zonen nicht zulässig. Besonders in Großraumbüros und Hallen ist zu prüfen, ob Maßnahmen zur Optimierung der Raumakustik notwendig sind.
Die Klassifizierung der Feuerwiderstandsdauer gilt für eine Brandbeanspruchung der Deckenunterseite. Die Deckenoberseite muss nach DIN 4102-2 ausgebildet werden.

Der Achsabstand der Bewehrung von $u \geq 37 \text{ mm}$ muss eingehalten werden. In Deckenbereichen ohne oBKT-Module muss der Achsabstand $u \geq 37 \text{ mm}$ durch entsprechende Abstandshalter sichergestellt werden.

Das allgemeine bauaufsichtliche Prüfzeugnis Nr. P-3159/334/12-MPA BS muss beachtet werden. Es ist im Internet als Download unter www.rehau.de verfügbar.

Um den Ausfall von Tauwasser an den aktivierten Bauteilen im Kühlfall zu verhindern, sind die BKT-Systeme mit Taupunktüberwachung des jeweiligen Raumluftzustands zu betreiben.

Die Vorlauftemperatur der BKT muss im Kühlfall mindestens 1 K über der jeweiligen Taupunkttemperatur des Raumluftzustands liegen.

Module: aktive Fläche – Anbindeleitung

Jedes Modul wird mit zwei Anbindeleitungen von je 1 m Länge für Vor- und Rücklauf ausgeliefert.

Die Anbindeleitungen sind für den Transport am Modul fixiert.

Verlegeabstand 75 mm / VA 7,5

Verlegeabstand 150 mm / VA 15

Modulhöhe, als Abstandshalter für die untere Bewehrungslage: Höhe 34 mm

<table>
<thead>
<tr>
<th>Breite D [m]</th>
<th>0,75</th>
<th>0,90</th>
<th>1,05</th>
<th>1,20</th>
<th>1,35</th>
<th>1,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge A [m]</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
</tr>
<tr>
<td>aktive Fläche [m²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,90</td>
<td>0,68</td>
<td>0,81</td>
<td>0,95</td>
<td>1,08</td>
<td>1,22</td>
<td>1,35</td>
</tr>
<tr>
<td>1,05</td>
<td>0,79</td>
<td>0,95</td>
<td>1,10</td>
<td>1,26</td>
<td>1,42</td>
<td>1,58</td>
</tr>
<tr>
<td>1,20</td>
<td>0,90</td>
<td>1,08</td>
<td>1,26</td>
<td>1,44</td>
<td>1,62</td>
<td>1,80</td>
</tr>
<tr>
<td>1,35</td>
<td>1,01</td>
<td>1,22</td>
<td>1,42</td>
<td>1,62</td>
<td>1,82</td>
<td>2,03</td>
</tr>
<tr>
<td>1,50</td>
<td>1,13</td>
<td>1,35</td>
<td>1,58</td>
<td>1,80</td>
<td>2,03</td>
<td>2,25</td>
</tr>
<tr>
<td>1,65</td>
<td>1,24</td>
<td>1,49</td>
<td>1,73</td>
<td>1,98</td>
<td>2,23</td>
<td>2,48</td>
</tr>
<tr>
<td>1,80</td>
<td>1,35</td>
<td>1,62</td>
<td>1,92</td>
<td>2,16</td>
<td>2,43</td>
<td>2,70</td>
</tr>
<tr>
<td>1,95</td>
<td>1,46</td>
<td>1,76</td>
<td>2,05</td>
<td>2,34</td>
<td>2,63</td>
<td>2,93</td>
</tr>
<tr>
<td>2,10</td>
<td>1,58</td>
<td>1,89</td>
<td>2,21</td>
<td>2,52</td>
<td>2,84</td>
<td>3,15</td>
</tr>
<tr>
<td>2,25</td>
<td>1,70</td>
<td>2,03</td>
<td>2,36</td>
<td>2,70</td>
<td>3,04</td>
<td>3,38</td>
</tr>
<tr>
<td>2,40</td>
<td>1,80</td>
<td>2,16</td>
<td>2,52</td>
<td>2,88</td>
<td>3,24</td>
<td>3,60</td>
</tr>
<tr>
<td>2,55</td>
<td>1,91</td>
<td>2,30</td>
<td>2,68</td>
<td>3,06</td>
<td>3,44</td>
<td>3,83</td>
</tr>
<tr>
<td>2,70</td>
<td>2,03</td>
<td>2,43</td>
<td>2,84</td>
<td>3,24</td>
<td>3,65</td>
<td>4,05</td>
</tr>
<tr>
<td>2,85</td>
<td>2,14</td>
<td>2,57</td>
<td>2,99</td>
<td>3,42</td>
<td>3,85</td>
<td>4,28</td>
</tr>
<tr>
<td>3,00</td>
<td>2,25</td>
<td>2,70</td>
<td>3,15</td>
<td>3,60</td>
<td>4,05</td>
<td>4,50</td>
</tr>
<tr>
<td>3,15</td>
<td>2,36</td>
<td>2,84</td>
<td>3,31</td>
<td>3,78</td>
<td>4,25</td>
<td>4,73</td>
</tr>
<tr>
<td>3,30</td>
<td>2,48</td>
<td>2,97</td>
<td>3,47</td>
<td>3,96</td>
<td>4,46</td>
<td>4,95</td>
</tr>
<tr>
<td>3,45</td>
<td>2,59</td>
<td>3,11</td>
<td>3,62</td>
<td>4,14</td>
<td>4,66</td>
<td>5,18</td>
</tr>
<tr>
<td>3,60</td>
<td>2,70</td>
<td>3,24</td>
<td>3,78</td>
<td>4,32</td>
<td>4,86</td>
<td>5,40</td>
</tr>
<tr>
<td>3,74</td>
<td>2,80</td>
<td>3,38</td>
<td>3,94</td>
<td>4,50</td>
<td>5,06</td>
<td>5,63</td>
</tr>
<tr>
<td>3,90</td>
<td>2,99</td>
<td>3,51</td>
<td>4,10</td>
<td>4,68</td>
<td>5,27</td>
<td>5,85</td>
</tr>
<tr>
<td>4,05</td>
<td>3,12</td>
<td>3,65</td>
<td>4,25</td>
<td>4,86</td>
<td>5,47</td>
<td>6,08</td>
</tr>
<tr>
<td>4,20</td>
<td>3,26</td>
<td>3,78</td>
<td>4,41</td>
<td>5,04</td>
<td>5,67</td>
<td>6,30</td>
</tr>
<tr>
<td>4,35</td>
<td>3,40</td>
<td>3,92</td>
<td>4,57</td>
<td>5,22</td>
<td>5,87</td>
<td>6,53</td>
</tr>
<tr>
<td>4,50</td>
<td>3,54</td>
<td>4,05</td>
<td>4,73</td>
<td>5,40</td>
<td>6,08</td>
<td>6,75</td>
</tr>
<tr>
<td>4,65</td>
<td>3,68</td>
<td>4,19</td>
<td>4,88</td>
<td>5,58</td>
<td>6,28</td>
<td>6,98</td>
</tr>
<tr>
<td>4,80</td>
<td>3,82</td>
<td>4,32</td>
<td>5,04</td>
<td>5,76</td>
<td>6,48</td>
<td>7,20</td>
</tr>
<tr>
<td>4,95</td>
<td>3,96</td>
<td>4,46</td>
<td>5,20</td>
<td>5,94</td>
<td>6,68</td>
<td>7,43</td>
</tr>
<tr>
<td>5,10</td>
<td>4,10</td>
<td>4,59</td>
<td>5,36</td>
<td>6,12</td>
<td>6,89</td>
<td>7,65</td>
</tr>
<tr>
<td>5,25</td>
<td>4,24</td>
<td>4,73</td>
<td>5,51</td>
<td>6,30</td>
<td>7,09</td>
<td>7,88</td>
</tr>
<tr>
<td>5,40</td>
<td>4,38</td>
<td>4,86</td>
<td>5,67</td>
<td>6,48</td>
<td>7,29</td>
<td>8,10</td>
</tr>
<tr>
<td>5,55</td>
<td>4,52</td>
<td>5,00</td>
<td>5,83</td>
<td>6,66</td>
<td>7,49</td>
<td>8,33</td>
</tr>
<tr>
<td>5,70</td>
<td>4,66</td>
<td>5,13</td>
<td>5,99</td>
<td>6,84</td>
<td>7,70</td>
<td>8,55</td>
</tr>
</tbody>
</table>

Die Abmaße beziehen sich auf die thermisch aktive Fläche
2.3.1.5 Verlegeart Doppelmäander / Einfachmäander

Die Rohrverlegeart Doppelmäander weist im Vergleich zum Einfachmäander ein gleichmäßigeres Temperaturprofil über die gesamte Modulfläche auf. Besonders bei großflächigen Modulen führt dies zu einer homogeneren Temperaturverteilung im Bauteil und zu gleichmäßigeren Temperaturen an den Bauteiloberflächen.

Abb. 2-7 REHAU BKT-Modul DM
Abb. 2-8 REHAU BKT-Modul EM

2.3.1.6 Hydraulische Anschlussvarianten

Der hydraulische Abgleich der BKT-Kreise und des gesamten Rohrnetzes ist bei jeder Anschlussvariante erforderlich.

Verteileranschluss
Analog zur REHAU Fußbodenheizung und -kühlung kann der Anschluss der BKT-Kreise mittels eines BKT-Verteilers an das Rohrnetz der Verteilleitungen erfolgen. Es sind zur Absperrung und Einregulierung Kugelhähne und Regulierventile zu empfehlen.

Bei der Auslegung ist zu berücksichtigen:
- Max. Druckverlust von 300 mbar je BKT-Kreis
- Nahezu gleich große BKT-Kreise

Abb. 2-9 Schematische Darstellung Verteileranschluss

Zwei-Leiter-System im Verfahren Tichelmann

Bei der Auslegung ist zu berücksichtigen:
- Max. Druckverlust von 300 mbar je BKT-Kreis
- Nahezu gleich große BKT-Kreise

Abb. 2-10 Schematische Darstellung Zwei-Leiter-System

1 Vorlauf 2 Rücklauf 3 Regulier- und Absperrventil 4 Absperrventil 5 BKT-Kreis
2.3.2 Heiz-/Kühlleistungen

<table>
<thead>
<tr>
<th>Deckenaufbau</th>
<th>Aufbau [mm]</th>
<th>Raumtemperatur [°C]</th>
<th>Kühlen</th>
<th>Heizen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>17</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorlauftemperatur [°C]</th>
<th>16</th>
<th>16</th>
<th>15</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rücklauftemperatur [°C]</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>

Betonkerntemperierung

RAUTHERM S 20x2,0 VA 15

Boden

<table>
<thead>
<tr>
<th>Boden</th>
<th>mittlere T an Oberfläche [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teppich</td>
<td>24,8</td>
</tr>
<tr>
<td>Estrich</td>
<td>39</td>
</tr>
<tr>
<td>Bodenhohlraum</td>
<td>22,4</td>
</tr>
</tbody>
</table>

Gesamt

<table>
<thead>
<tr>
<th>[W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>29</td>
</tr>
</tbody>
</table>

Tab. 2-1 Mittlere statische Leistungen in W/m² (aktive Fläche)

- Wärmedurchgangswiderstand der Luftschicht im Doppelboden nach EN 15377
- Wärmeübergangswiderstände an den Oberflächen nach EN 15377
- Bei Vorlauftemperatur +16 °C: rel. Raumluftfeuchte 50 %, 26 °C Raumtemperatur
- Bei Vorlauftemperatur +15 °C: rel. Raumluftfeuchte 45 %, 26 °C Raumtemperatur
Die zu beachtende detaillierte Montageanleitung BKT sowie die Druckprüfungsprotokolle finden Sie im Internet zum Download unter www.rehau.de.

Lassen Sie die Montage unserer Systeme nur von autorisiertem und geschultem Fachpersonal durchführen.

2.3.3.1 Allgemeine Montagehinweise für BKT und oBKT

- Tabuzonen dürfen laut Verlegeplan nicht mit BKT bzw. oBKT belegt werden.
- Schiebehülsenverbindungen in Beton gemäß DIN 18560 mit Schutzband ummanteln.
- Die Montagepläne beziehen sich auf die Bezugsachsen/-punkte des Gebäudes.
- Verlegungen mit BKT und oBKT können bei folgenden Einbautemperaturen durchgeführt werden:
 - Modulverlegung: min \(-10\) °C bis +45 °C
 - Erstellen von Verbindungen mit REHAU Schiebehülsentechnik: min \(-10\) °C bis +45 °C
- Unmittelbar vor Beginn der Betonierarbeiten müssen die verlegten Module einer Sichtkontrolle unterzogen werden.
- Drücken verformte Bewehrungseisen oder andere Deckeneinbauteile das Rohr auf die untere Schalungsebene, so ist dies zu korrigieren.
- Bei Durchführung der Sichtkontrolle ist die Ausrichtung der Abstandhaltern zu kontrollieren. Defekte Abstandhalter müssen ausgetauscht, verdrehte Abstandhalter ausgerichtet werden.

2.3.3.2 Montageablauf allgemein

BKT Module und BKT im FT

<table>
<thead>
<tr>
<th>Schritte</th>
<th>BKT Module</th>
<th>BKT im FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Schalung</td>
<td>Montage von Einbauteilen wie z. B. Schalungskasten, BKT-Anschlussdose</td>
<td>Verlegung der unteren Bewehrungs</td>
</tr>
<tr>
<td>2. Verlegung</td>
<td>Verlegung der Module mit Abstandhaltern gemäß Montageplan mit anschließender Druckprobe</td>
<td>Anbindeleitung verlegen und in Schalungskasten führen</td>
</tr>
<tr>
<td></td>
<td>Sichtabnahme</td>
<td>Verlegung der oberen Bewehrung</td>
</tr>
<tr>
<td>3. Beton</td>
<td>Nach Abnehmen der Deckenschalung die zweite Druckprobe durchführen</td>
<td>Betonievorgang überwachen</td>
</tr>
</tbody>
</table>

oBKT Module

Das allgemeine bauaufsichtliche Prüfzeugnis Nr. P-3159/334/12-MPA BS muss beachtet werden. Es ist im Internet als Download unter www.rehau.de verfügbar.

<table>
<thead>
<tr>
<th>Schritte</th>
<th>oBKT Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Schalung</td>
<td>Montage von Einbauteilen wie z. B. Schalungskasten, BKT-Anschlussdose</td>
</tr>
<tr>
<td>2. Verlegung</td>
<td>Verlegung der Module mit Abstandhaltern, sichern gegen Verschieben und anschließende Druckprobe</td>
</tr>
<tr>
<td></td>
<td>Lage der Module überprüfen, Sichtabnahme</td>
</tr>
<tr>
<td>3. Beton</td>
<td>Verlegung der unteren Bewehrungs</td>
</tr>
<tr>
<td></td>
<td>- Anbindeleitung am Modul auf die untere Schalungs-ebene führen</td>
</tr>
<tr>
<td></td>
<td>Sichtabnahme</td>
</tr>
<tr>
<td></td>
<td>Verlegung der oberen Bewehrung</td>
</tr>
<tr>
<td></td>
<td>Betonievorgang überwachen</td>
</tr>
<tr>
<td></td>
<td>Nach Abnehmen der Deckenschalung die zweite Druckprobe durchführen</td>
</tr>
</tbody>
</table>

Die Montage der REHAU BKT als Ortverlegung erfolgt analog der Verlegung einer Industrieflächeneizung. Siehe Technische Information „Flächenheizung, Nichtwohnbau“.

Anpassungen von oBKT-Modulen vor Ort sind nicht zulässig.
Drillgerät

Das Drillgerät aus Metall mit Kunststoffummantelung wird zum sachgerechten und schnellen Verdrillen der BKT-Mattenbinder eingesetzt. Es kommt im Zuge der Befestigungsarbeiten für REHAU BKT-Module und bei der Betonkerntemperierung vor Ort verlegt zum Einsatz.

<table>
<thead>
<tr>
<th>Material</th>
<th>Stahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>310 mm</td>
</tr>
<tr>
<td>Drillgerät-Ø</td>
<td>30 mm</td>
</tr>
<tr>
<td>Farbe</td>
<td>Schwarz</td>
</tr>
</tbody>
</table>

BKT-Schalungskasten

Der BKT-Schalungskasten aus schlagfestem Polyethylen dient zur Durchführung der Anbindeleitungen der REHAU BKT-Module aus der Betondecke heraus. Er kann als Einzelschalungskasten und durch angeformte Steckverbinder auch als Mehrfachschalungskasten verwendet werden.

<table>
<thead>
<tr>
<th>Material</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>400 mm</td>
</tr>
<tr>
<td>Breite</td>
<td>50 mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>60 mm</td>
</tr>
<tr>
<td>Rohr-Ø</td>
<td>17 x 2,0 / 20 x 2,0</td>
</tr>
</tbody>
</table>

BKT-Mattenbinder

Der BKT-Mattenbinder besteht aus kunststoffummanteltem Draht. Er dient zur Befestigung der REHAU BKT-Module an der Bewehrung und zur Fixierung an den BKT-Abstandhaltern. Er kann auch bei der Betonkerntemperierung vor Ort verlegt eingesetzt werden.

<table>
<thead>
<tr>
<th>Material</th>
<th>Kunststoffummantelter Draht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draht-Ø</td>
<td>1,4 mm</td>
</tr>
<tr>
<td>Länge</td>
<td>140 mm</td>
</tr>
<tr>
<td>Farbe</td>
<td>Schwarz</td>
</tr>
</tbody>
</table>

BKT-Anschlussdose

Die Anschlussdose inklusiv passendem Steckdeckel dient zum nachträglichen Anschluss von zusätzlichen externen frei von der Decke hängenden Kühl-/Heizelementen oder Umluft-Kühleräteten zur Spitzenlastabdeckung.

<table>
<thead>
<tr>
<th>Material</th>
<th>Halogenfrei, Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>115 mm</td>
</tr>
<tr>
<td>Breite</td>
<td>115 mm</td>
</tr>
<tr>
<td>Höhe</td>
<td>90 mm</td>
</tr>
<tr>
<td>Farbe Gehäuse</td>
<td>Grau</td>
</tr>
<tr>
<td>Farbe Steckdeckel</td>
<td>Weiß</td>
</tr>
</tbody>
</table>
Kabelbinder

Abb. 2-15 Kabelbinder

Der Kabelbinder aus Polyamid dient zur Befestigung der REHAU BKT-Module an der Bewehrung und zur Fixierung an den BKT-Abstandshaltern. Er kann auch bei der Betonkerntemperierung vor Ort verlegt eingesetzt werden.

<table>
<thead>
<tr>
<th>Material</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>178 mm</td>
</tr>
<tr>
<td>Breite</td>
<td>4,8 mm</td>
</tr>
<tr>
<td>Farbe</td>
<td>Natur</td>
</tr>
</tbody>
</table>

Schutzrohr

Abb. 2-17 Schutzrohr

Das Schutzrohr aus Polyethylen kommt im Bereich von Dehnungsfugen zum Einsatz. Es kann auch zur deckenoberseitigen Durchführung von Anbindeleitungen aus der Betondecke heraus eingesetzt werden.

<table>
<thead>
<tr>
<th>Material</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innen-Ø</td>
<td>19/23/29 mm</td>
</tr>
<tr>
<td>Außen-Ø</td>
<td>24/29/34 mm</td>
</tr>
<tr>
<td>Farbe</td>
<td>Schwarz</td>
</tr>
</tbody>
</table>

BKT-Schutzband

Abb. 2-16 Schutzband

Das Schutzband aus Weich-Polyvinylchlorid dient zum Schutz der Schiebehülsenverbindung vor Direktkontakt mit Beton gemäß DIN 18560.

<table>
<thead>
<tr>
<th>Material</th>
<th>Weich-PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandbreite</td>
<td>50 mm</td>
</tr>
<tr>
<td>Bandlänge</td>
<td>33 m</td>
</tr>
<tr>
<td>Farbe</td>
<td>Rot</td>
</tr>
</tbody>
</table>

Schiebehülse

Abb. 2-18 Schiebehülse

<table>
<thead>
<tr>
<th>Material</th>
<th>Messing verzinkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohr-Ø</td>
<td>14 x 1,5 / 17 x 2,0 / 20 x 2,0</td>
</tr>
<tr>
<td>Länge</td>
<td>20 mm</td>
</tr>
</tbody>
</table>

Jede Schiebehülsenverbindung im Beton muss mit REHAU Schutzband gemäß DIN 18560 ummantelt werden.
Kupplung

<table>
<thead>
<tr>
<th>Material</th>
<th>Messing verzinkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohr-Ø</td>
<td>14 x 1,5 / 17 x 2,0 / 20 x 2,0</td>
</tr>
<tr>
<td>Länge</td>
<td>53 mm</td>
</tr>
</tbody>
</table>

Blindstopfen

Der Blindstopfen dient zur Abdichtung der Rohrenden und wird mit der Schiebehülsenverbindung an die RAUTHERM S Rohre montiert.

<table>
<thead>
<tr>
<th>Material</th>
<th>Messing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohr-Ø</td>
<td>14 x 1,5 / 17 x 2,0 / 20 x 2,0</td>
</tr>
</tbody>
</table>

Druckluftrohrverschluss

Der Druckluftrohrverschluss dient zur Druckprüfung auf der Baustelle und wird mit der Schiebehülsenverbindung an die RAUTHERM S Rohre werkseitig montiert. Bei der Betonkerntemperierung vor Ort verlegt wird er bauseits montiert.

<table>
<thead>
<tr>
<th>Material</th>
<th>Messing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohr-Ø</td>
<td>14 x 1,5 / 17 x 2,0 / 20 x 2,0</td>
</tr>
<tr>
<td>Länge</td>
<td>59/58 mm</td>
</tr>
</tbody>
</table>

Druckluftstecknippel

Der Druckluftstecknippel wird in Verbindung mit dem Manometer bei der Druckprüfung auf der Baustelle eingesetzt. Die Druckprüfungen sind vor dem Betoniervorgang und nach Abnahme der unteren SchalungsEbene auf der Baustelle durchzuführen.

<table>
<thead>
<tr>
<th>Material</th>
<th>Messing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>33 mm</td>
</tr>
<tr>
<td>Anschluss</td>
<td>Rp ¼"</td>
</tr>
</tbody>
</table>
Manometer

Das Manometer wird in Verbindung mit dem Druckluftstecknippel bei der Druckprüfung auf der Baustelle eingesetzt. Die Druckprüfungen sind vor dem Betoniervorgang und nach Abnahme der unteren Schalungsebene auf der Baustelle durchzuführen.

<table>
<thead>
<tr>
<th>Material</th>
<th>Stahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge</td>
<td>40 mm</td>
</tr>
<tr>
<td>Anschluss</td>
<td>R ¼"</td>
</tr>
</tbody>
</table>

REHAU Industrieverteiler

REHAU BKT-Transportgestell

Technische Daten

Länge	4,0 m
Breite	1,0 m
Höhe	2,2 m
Material	Stahl lackiert
Gewicht	235 kg

VORSICHT

REHAU BKT-Transportgestelle dürfen nur mit gesicherter Ladung transportiert werden.
<table>
<thead>
<tr>
<th>Grundlagen zur Druckprüfung</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckprüfungsprotokoll REHAU Betonkerntemperierung / 1. Druckprüfung mit dem Prüfmedium Wasser</td>
<td>22</td>
</tr>
<tr>
<td>Druckprüfungsprotokoll REHAU Betonkerntemperierung / 2. Druckprüfung mit dem Prüfmedium Wasser</td>
<td>23</td>
</tr>
<tr>
<td>Druckprüfungsprotokoll REHAU Betonkerntemperierung / 1. Druckprüfung mit dem Prüfmedium Luft oder Inertgas</td>
<td>24</td>
</tr>
<tr>
<td>Druckprüfungsprotokoll REHAU Betonkerntemperierung / 2. Druckprüfung mit dem Prüfmedium Luft oder Inertgas</td>
<td>26</td>
</tr>
</tbody>
</table>
3.1 Grundlagen zur Druckprüfung

Die erfolgreiche Durchführung und Dokumentation einer Druckprüfung ist Voraussetzung für eventuelle Ansprüche im Rahmen der REHAU Gewährleistung bzw. der Haftungsausgleichsvereinbarung mit dem Zentralverband Sanitär Heizung Klima (ZVSHK Deutschland).

Nach DIN EN 1264 und VOB DIN 18380 muss an den fertiggestellten, aber noch nicht verdeckten Leitungen vor der Inbetriebnahme eine Druckprüfung durchgeführt werden.

Aussagen über die Anlagendichtheit anhand des auftretenden Prüfdruckverlaufs (konstant, fallend, steigend) können nur bedingt getroffen werden.

- Die Dichtheit der Anlage kann nur durch eine Sichtkontrolle an unverdeckten Leitungen überprüft werden.
- Feinstleckagen können nur mit einer Sichtkontrolle (Wasseraustritt oder Lecksuchmittel) bei hohem Druck geortet werden.

Eine Unterteilung der Leitungsanlage in kleinere Prüfabschnitte erhöht die Prüfgenauigkeit.

3.2 Dichtheitsprüfungen von Flächenheizungs-/kühlungsinstallationen mit Wasser

3.2.1 Vorbereitung der Druckprüfung mit Wasser

1. Leitungen müssen zugänglich und dürfen nicht verdeckt sein.
2. Sicherheits-und Zähleinrichtungen bei Bedarf ausbauen und durch Rohrstücke oder Rohrleitungsverschlüsse ersetzen.
4. Rohrleitungen so lange spülen und entlüften, bis ein luftfreier Wasseraustritt feststellbar ist.
5. Druckprügerät mit einer Genauigkeit von 100 hPa (0,1 bar) für die Druckprüfung verwenden.
6. Druckprügerät an der tiefsten Stelle an die Flächenheizungs-/kühlungsinstallation anschließen.
7. Alle Kugelhähne/Ventile sorgfältig schließen.

Die Druckprüfung kann durch Temperaturänderungen im Rohrsystem stark beeinflusst werden, z. B. kann eine Temperaturänderung von 10 K eine Druckänderung von 0,5 bis 1 bar verursachen.

Aufgrund der Rohrwerkstoffeigenschaften (z. B. Rohrdehnung bei zunehmender Druckbeaufschlagung) kann während der Druckprüfung eine Druckschwankung entstehen.

Der Prüfdruck sowie der bei der Prüfung entstehende Druckverlauf lässt keine ausreichenden Rückschlüsse auf die Dichtheit der Anlage zu. Deshalb ist die komplette Flächenheizungs-/kühlungsinstallation, wie in den Normen gefordert, durch Sichtkontrolle auf Dichtheit zu prüfen.

8. Sicherstellen, dass die Temperatur während der Druckprüfung möglichst konstant bleibt.

3.2.2 Abschluss der Druckprüfung mit Wasser

Nach Abschluss der Druckprüfung:
1. Druckprüfung durch ausführende Firma und Auftraggeber im Druckprüfungsprotokoll bestätigen.
2. Druckprügerät abbauen.
4. Ausgebaute Sicherheits- und Zähleinrichtungen wieder einbauen.

3.3 Dichtheitsprüfungen von Flächenheizungs-/kühlungsinstallationen mit ölfreier Druckluft/Inertgas

Wichtige Informationen zur Prüfung mit ölfreier Druckluft oder Inertgas:
- Kleine Leckagen sind nur mittels Lecksuchmitteln bei hohen Prüfdrücken (Belastungsprüfung) und dazugehöriger Sichtkontrolle erkennbar.
- Temperaturschwankungen können das Prüfergebnis beeinträchtigen (Druckabfall oder -anstieg).

Lecksuchmittel
Nur Lecksuchmittel (z. B. schaumbildende Mittel) mit aktueller DVGW-Zertifizierung verwenden.

3.3.1 Vorbereitung der Druckprüfung mit ölfreier Druckluft/Inertgas

![Druckprüfdiagramm für Druckprüfung mit ölfreier Druckluft/Inertgas](image)

<table>
<thead>
<tr>
<th>Leitungsvolumen</th>
<th>Anpassungszeit</th>
<th>Prüfzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 l</td>
<td>10 min</td>
<td>120 min</td>
</tr>
<tr>
<td>≥ 100 < 200 l</td>
<td>30 min</td>
<td>140 min</td>
</tr>
<tr>
<td>≥ 200 l</td>
<td>60 min + 20 min je 100 l</td>
<td></td>
</tr>
</tbody>
</table>

1) Richtwerte, abhängig vom Leitungsvolumen
1. Leitungen müssen zugänglich und dürfen nicht verdeckt sein.
2. Sicherheits- und Zähleinrichtungen bei Bedarf ausbauen und durch Rohr-
 stücke oder Rohrleitungsverschlüsse ersetzen.
3. Entlüftungsventile zum sicheren Ablassen der Druckluft in ausreichender
 Anzahl und an geeigneten Stellen einbauen.
4. Manometer mit einer Messgenauigkeit von 1 hPa (1 mbar) einbauen.
5. Alle Kugelhähne/Ventile sorgfältig schließen.

Der Prüfdruck sowie der bei der Prüfung entstehende Druckverlauf lässt keine
ausreichenden Rückschlüsse auf die Dichtheit der Anlage zu. Deshalb ist die
komplette Flächenheizungs-/kühlungsinstallation, wie in den Normen gefor-
dert, durch Lecksuchmittel und Sichtkontrolle auf Dichtheit zu prüfen.

6. Sicherstellen, dass die Temperatur während der Druckprüfung möglichst
 konstant bleibt.
7. Druckprüfungsprotokoll vorbereiten (siehe Kapitel 3.5) und Anlagedaten
 notieren.

3.3.2 Dichtheitsprüfung

1. Anpassungszeit und Prüfdauer gemäß Tab. 3-1 auswählen.
2. Prüfdruck von 150 mbar langsam in der Flächenheizungs-/kühlungsinsta-
 llation aufbauen.
4. Nach der Anpassungszeit mit Dichtheitsprüfung beginnen:
5. Prüfdruck ablesen und zusammen mit der Prüfdauer im Druckprüfungs-
 protokoll notieren.
7. Gesamte Flächenheizungs-/Kühlungsinstallation, insbesondere die
 Verbindungsstellen, durch Sichtkontrolle mit Lecksuchmittel auf Dichtheit
 prüfen.

Falls der Prüfdruck abgefallen ist:
- Erneut mit Lecksuchmittel eine genaue Sichtkontrolle der Rohrleitungen,
 Entnahme- und Verbindungsstellen durchführen.
- Ursache des Druckabfalls beseitigen und Dichtheitsprüfung
 (Schritte 1 - 5) wiederholen.
8. Wurde keine Undichtheit festgestellt, Sichtkontrolle im Druckprüfungspro-
 tokoll notieren.

3.3.3 Belastungsprüfung

1. Prüfdruck von 3 bar langsam in der Flächenheizungs-/kühlungsinstalla-
 tion aufbauen.
2. Nach Stabilisierung des Drucks eventuell Prüfdruck von 3 bar
 wiederherstellen.
3. Prüfdruck ablesen und im Druckprüfungsprotokoll notieren.
5. Gesamte Flächenheizungs-/Kühlungsinstallation, insbesondere die
 Verbindungsstellen, durch Sichtkontrolle mit Lecksuchmitteln auf Dichtheit
 prüfen.

Falls eine Undichtheit bei der Sichtkontrolle festgestellt wurde:
- Undichtheit beseitigen und die gesamte Dichtheits- und Belastungs-
 prüfung wiederholen.
6. Wurde keine Undichtheit festgestellt, Sichtkontrolle im Druckprüfungspro-
 tokoll notieren.
7. Druckluft nach Abschluss der Belastungsprüfung gefahrenfrei ablassen.

3.3.4 Abschluss der Druckprüfung mit ölfreier Druckluft/Inertgas

Nach Abschluss der Druckprüfung:
1. Druckprüfung durch ausführende Firma und Auftraggeber im Druckprü-
 fungsprotokoll bestätigen.
2. Druckprügerät abbauen.
3. Ausgebaute Sicherheits- und Zähleinrichtungen wieder einbauen.

3.4 Spülen der Flächenheizungs-/kühlungsinstallation

Um Verunreinigungen aus Lagerung und Bauphase zu entfernen, müssen alle
Rohrleitungen gemäß den Vorgaben der DIN EN 14336 und VDI 2035 Blatt
2 „Vermeidung von Schäden in Warmwasserheizungen“ in einer definierten
Reihenfolge und Anzahl für mehrere Minuten ausgespült werden.

Die Entleerung einer Flächenheizungs-/kühlungsinstallation nach einer
Druckprobe mit Wasser ist gemäß VDI 2035 Blatt 2 nicht zu empfehlen.
Daher ist eine Einfriergefahr während und nach der Druckprüfung durch
geeignete Maßnahmen zwingend zwingend zu vermeiden.

3.5 Druckprüfungsprotokoll: REHAU Flächenheizung/-kühlung

Die Vorlage eines Protokolls zur Druckprüfung können Sie im Internet unter
der Adresse www.rehau.de herunterladen.
Druckprüfungsprotokoll REHAU Betonkerntemperierung

1. Druckprüfung mit dem Prüfmedium Wasser

Sichtabnahme- und Druckprüfungsprotokoll der REHAU Betonkerntemperierung für REHAU BKT-Module, REHAU oBKT-Module und REHAU Betonkerntemperierung vor Ort verlegt vor dem Betoniervorgang

Bauvorhaben: Bauherr:

Straße/Hausnummer: Postleitzahl/Ort:

Auftraggeber vertreten durch: Auftragnehmer vertreten durch:

Umgebungstemperatur: Wassertemperatur:

Max. Betriebsdruck:

1. Sichtabnahme

Die Kontrolle der in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise umfasst folgende Kriterien:

1.) Fixierung und Positionierung der Schalungskästen anhand gültiger Montagepläne
2.) Modul- bzw. Rohrverlegung anhand gültiger Montagepläne
3.) Fixierung und Verlegung der Anbindeleitungen sowie deren vollständige Einführung in den Schalungskästen
4.) Keine sichtbaren Beschädigungen an den BKT-Modulen/oBKT-Modulen/BKT-Kreisen
5.) oBKT: Ausrichtung der Abstandshalter

2. Druckprüfung

Die Druckprüfung bezieht sich auf die in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise

a. Sichtprüfung aller Verbindungen auf fachgerechte Ausführung vornehmen
b. Kugelhahn/Ventil am Verteiler schließen
b. Heizkreise einzeln nacheinander mit filtriertem Wasser gemäß VDI 2035 füllen, spülen und Anlage vollständig entlüften
d. Prüfdruck aufbringen: nicht weniger als 4 bar und nicht mehr als 6 bar
e. Druck nach 2 Stunden nochmals aufbringen, da Druckabfall durch die Dehnung der Rohre möglich ist
f. Prüfzeit 3 Stunden
g. Druckprobe ist bestanden, wenn an keiner Stelle der Rohrleitung Wasser austritt und der Prüfdruck nicht mehr als 0,1 bar pro Stunde abgesunken ist

Hinweis:
- Während des gesamten Betoniervorganges müssen die BKT-Module/oBKT-Module/BKT-Kreise unter Prüfdruck stehen, damit Undichtheiten erkannt werden können.
- Eine Einfriergefahr während und nach der Druckprüfung muss ausgeschlossen sein!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Bestätigung

Die Sichtabnahme und Dichtheitsprüfung ist ordnungsgemäß, gemäß Prüfprotokoll, durchgeführt worden.

Ort: Datum:

Ausführende Firma BKT:

Bauleitung TGA/Auftraggeber:
Prüfprotokolle

Druckprüfungsprotokoll REHAU Betonkerntemperierung

2. Druckprüfung mit dem Prüfmedium Wasser

Sichtabnahme- und Druckprüfungsprotokoll der REHAU Betonkerntemperierung für REHAU BKT-Module, REHAU oBKT-Module und REHAU Betonkerntemperierung vor Ort verlegt nach dem Betoniervorgang

Bauvorhaben: Bauherr:
Street/Hausnummer: Postleitzahl/Ort:
Auftraggeber vertreten durch: Auftragnehmer vertreten durch:

Umgebungstemperatur: Wassertemperatur:
Max. Betriebsdruck:

1. Sichtabnahme

Die Kontrolle der in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise umfasst folgende Kriterien:

1.) Zustand der Anbindeleitungen
2.) Zustand der Druckluftrohverschlüsse

2. Druckprüfung

Die Druckprüfung bezieht sich auf die in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise

a) Kontrolle des aus der 1. Druckprüfung aufgebrachten Prüfdruckes.
b) Dichtheit ist gegeben, wenn an keiner Stelle der Rohrleitungen Prüfmedium ausgetreten ist und der Prüfdruck aus der 1. Druckprüfung nicht mehr als 0,3 bar gesunken ist.
c) Ist der Prüfdruck um mehr als 0,3 bar gesunken, so ist die 1. Druckprüfung zu wiederholen.

Hinweis: Eine Einfriergefahr während und nach der Druckprüfung muss ausgeschlossen sein!

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Gebäude</th>
<th>Modul-Typ</th>
<th>Länge [m]</th>
<th>Breite [m]</th>
<th>geprüfter Druck [bar]</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Bestätigung

Die Sichtabnahme und Dichtheitsprüfung ist ordnungsgemäß, gemäß Prüfprotokoll, durchgeführt worden.

Ort: Datum:

Ausführende Firma BKT:

Bauleitung TGA/Auftraggeber:
Druckprüfungsprotokoll REHAU Betonkerntemperierung

1. Druckprüfung mit dem Prüffmedium Luft oder Inertgas, Prüfung in Anlehnung des ZVSHK-Merkblatts

Sichtabnahme- und Druckprüfungsprotokoll der REHAU Betonkerntemperierung für REHAU BKT-Module, REHAU oBKT-Module und REHAU Betonkerntemperierung vor Ort verlegt vor dem Betoniervorgang

Bauvorhaben: Bauherr:

<table>
<thead>
<tr>
<th>Straßen/Postleitzahl/Ort:</th>
<th>Straße/Hausnummer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauherr vertreten durch:</td>
<td>Auftraggeber vertreten durch:</td>
</tr>
<tr>
<td>Umgebungstemperatur:</td>
<td>Prüfmedium-Temperatur:</td>
</tr>
<tr>
<td>Max. Betriebsdruck:</td>
<td></td>
</tr>
</tbody>
</table>

1. Sichtabnahme

Die Kontrolle der in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise umfasst folgende Kriterien:

1.) Fixierung und Positionierung der Schalungskästen anhand gültiger Montagepläne
2.) Modul- bzw. Rohrverlegung anhand gültiger Montagepläne
3.) Fixierung und Verlegung der Anbindeleitungen sowie deren vollständige Einführung in den Schalungskasten
4.) Keinerlei sichtbare Beschädigungen an den BKT-Modulen/oBKT-Modulen/BKT-Kreisen
5.) oBKT: Ausrichtung der Abstandshalter

2. Druckprüfung

Die Druckprüfung bezieht sich auf die in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise

☐ Sichtprüfung aller Verbindungen auf fachgerechte Ausführung vorgenommen, Kugelhahn/Ventil am Verteiler geschlossen.

<table>
<thead>
<tr>
<th>Prüfmedium</th>
<th>Ölfreie Druckluft</th>
<th>Stickstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kohlendioxid</td>
<td></td>
</tr>
</tbody>
</table>

2.1 Prüfdruck

<table>
<thead>
<tr>
<th>Leitungsvolumen</th>
<th>Anpassungszeit</th>
<th>Prüfzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 l</td>
<td>10 min</td>
<td>120 min</td>
</tr>
<tr>
<td>≥ 100 < 200 l</td>
<td>30 min</td>
<td>140 min</td>
</tr>
<tr>
<td>≥ 200 l</td>
<td>60 min</td>
<td>+ 20 min je 100 l</td>
</tr>
</tbody>
</table>

2.2 Leitungsvolumen 100 l

2.3 Anpassungszeit 10 min

2.4 Aktueller Druck 150 mbar = 150 hPa

2.5 Prüfzeit 60 min

2.6 Aktueller Druck 150 mbar = 150 hPa

☐ Komplette Betonkerntemperierung, insbesondere Verbindungsstellen, durch Sichtkontrolle mit Lecksuchmittel auf Dichtheit geprüft und keine Undichtheit festgestellt.

3. Hauptprüfung

3.1 Prüfdruck 3 bar

3.2 Aktueller Druck nach 10 min 3 bar

☐ Komplette Betonkerntemperierung, insbesondere Verbindungsstellen, durch Sichtkontrolle mit Lecksuchmittel auf Dichtheit geprüft und keine Undichtheit festgestellt.

Hinweis: Während des gesamten Betoniervorganges müssen die BKT-Module/oBKT-Module/BKT-Kreise unter Prüfdruck stehen, damit Undichtheiten erkannt werden können.

Tabelle Modul-Nummern und Bestätigung siehe Seite 2 des Druckprüfungsprotokolls
Druckprüfungsprotokoll REHAU Betonkerntemperierung
1. Druckprüfung mit dem Prüfmedium Luft oder Inertgas, Prüfung in Anlehnung des ZVSHK-Merkblatts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Bestätigung
Die Sichtabnahme und Dichtheitsprüfung ist ordnungsgemäß, gemäß Prüfprotokoll, durchgeführt worden.

Ort: Datum:
Ausführende Firma BKT:
Bauleitung TGA/Auftraggeber:
Druckprüfungsprotokoll REHAU Betonkerntemperierung

2. Druckprüfung mit dem Prüfmedium Luft oder Inertgas, Prüfung in Anlehnung des ZVSHK-Merkblatts

Sichtabnahme- und Druckprüfungsprotokoll der REHAU Betonkerntemperierung für REHAU BKT-Module, REHAU oBKT-Module und REHAU Betonkerntemperierung vor Ort verlegt nach dem Betoniervorgang

Bauvorhaben: Bauherr:
Straße/Hausnummer: Postleitzahl/Ort:
Auftraggeber vertreten durch: Auftragnehmer vertreten durch:
Umgebungstemperatur: Prüfmedium-Temperatur:
Max. Betriebsdruck:

1. Sichtabnahme

Die Kontrolle der in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise umfasst folgende Kriterien:
 1.) Zustand der Anbindeleitungen
 2.) Zustand der Druckluftrohrverschlüsse

2. Druckprüfung

Die Druckprüfung bezieht sich auf die in der Tabelle aufgeführten BKT-Module/oBKT-Module/BKT-Kreise
 a) Kontrolle des aus der 1. Druckprüfung aufgebrachten Prüfdrucks.
 b) Ist der Prüfdruck gesunken, so ist die 1. Druckprüfung zu wiederholen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Bestätigung

Die Sichtabnahme und Dichtheitsprüfung ist ordnungsgemäß, gemäß Prüfprotokoll, durchgeführt worden.

Ort: Datum:

Ausführende Firma BKT:

Bauleitung TGA/Auftraggeber:
Beachten Sie alle geltenden nationalen und internationalen Verleger-, Installations-, Unfallverhütungs- und Sicherheitsvorschriften bei der Installation von Rohrleitungsanlagen sowie die Hinweise dieser Technischen Information.

Beachten Sie ebenfalls die geltenden Gesetze, Normen, Richtlinien, Vorschriften (z. B. DIN, EN, ISO, DVGW, TRGI, VDE und VDI) sowie Vorschriften zu Umweltschutz, Bestimmungen der Berufsgenossenschaften und Vorschriften der örtlichen Versorgungsunternehmen.

Anwendungsbereiche, die in dieser Technischen Information nicht erfasst werden (Sonderanwendungen), erfordern die Rücksprache mit unserer anwendungstechnischen Abteilung.

Für eine ausführliche Beratung wenden Sie sich an Ihr REHAU Verkaufsbüro.

Die Planungs- und Montagehinweise sind unmittelbar mit dem jeweiligen Produkt von REHAU verbunden. Es wird auszugsweise auf allgemein gültige Normen oder Vorschriften verwiesen.

Beachten Sie jeweils den gültigen Stand der Richtlinien, Normen und Vorschriften.

Weitergehende Normen, Vorschriften und Richtlinien bezüglich der Planung, der Installation und des Betriebs von Trinkwasser-, Heizungs- oder gebäude-technischen Anlagen sind ebenfalls zu berücksichtigen und nicht Bestandteil dieser Technischen Information.

Auf folgende Normen, Vorschriften und Richtlinien wird in der Technischen Information verwiesen (gültig ist immer der aktuelle Stand):

- DIN 1045: Tragwerke aus Beton, Stahlbeton und Spannbeton
- DIN 1055: Einwirkungen auf Tragwerke
- DIN 15018: Krane
- DIN 16892: Rohre aus vernetztem Polyethylen hoher Dichte (PE-X) - Allgemeine Güteanforderungen, Prüfung
- DIN 16893: Rohre aus vernetztem Polyethylen hoher Dichte (PE-X) - Maße
- DIN 18195: Bauwerksabdichtungen
- DIN 18202: Toleranzen im Hochbau
- DIN 18350: VOB Vergabe- und Vertragsordnung für Bauleistungen - Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) - Putz- und Stuckarbeiten
- DIN 18380: VOB Vergabe- und Vertragsordnung für Bauleistungen - Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) - Heizanlagen und zentrale Wasserrwärmungsanlagen
- DIN 18560: Estriche im Bauwesen
- DIN 4102: Brandverhalten von Baustoffen und Bauteilen
- DIN 4108: Wärmeschutz und Energie-Einsparung in Gebäuden
- DIN 4109: Schallschutz im Hochbau
- DIN 4726: Warmwasser-Fußbodenheizungen und Heizkörperanbindungen - Kunststoffrohr- und Verbundleitungssysteme
- DIN 49019: Elektro-Installationsrohre und Zubehör
- DIN 50916-2: Prüfung von Kupferlegierungen; Spannungsrißkorrosionssprüfung mit Ammoniak; Prüfung von Bauteilen
REHAU will nah bei seinen Kunden sein. Für eine schnelle, zufriedenstellende und ständige Betreuung vor Ort stehen Ihnen regionale REHAU Verkaufs büros zur Verfügung. Dort sorgen kompetente Mitarbeiter für eine qualifizierte Beratung und Bearbeitung von Anfragen und Problemen.

In leistungsstarken Logistikzentren und großen Lagern werden die gängigen REHAU Produkte für Sie bereit gehalten. Wir unterstützen Sie mit Rat und Tat bei der Vorbereitung und Ausarbeitung von Großprojekten oder schwierigen Konstruktionen bis hin zur Realisierung. Nutzen Sie den REHAU Touren-Service, der die Produkte pünktlich ins Haus oder zur Baustelle liefert, oder die REHAU Verteilzentren, die Weg, Zeit und Dispositionsaufwand gering halten.

www.rehau.de

Und hier die einzelnen Verkaufs büros mit Anschrift und Telefonnummer:

- D: Berlin:
 Stralauer Platz 34
 10243 Berlin
 Tel.: 030 66766-0

- Bochum:
 Vita Campus, Universitätsstraße 140
 44799 Bochum
 Tel.: 0234 6 89 03-0

- Frankfurt:
 Gewerbegebiet Dietzenbach Nord
 Waldstraße 80-82,
 63128 Dietzenbach
 Tel.: 06074 4090-0

- Hamburg:
 Tempowerkring 1c
 21079 Hamburg
 Tel.: 040 733402-100

- Leipzig:
 Gewerbegebiet Nord-West, Ringstraße 4
 04827 Gerichshain
 Tel.: 0342 9282-0

- Nürnberg:
 Am Pestalozziring 12
 91058 Erlangen/Eltersdorf
 Tel.: 09131 93408-0

- Stuttgart:
 Malmshaim, Haldenstraße 1
 71272 Renningen
 Tel.: 07159 1601-0